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ABSTRACT - Nowadays and in the coming years, many large swath satellite
sensors such as VEGETATION, POLDER, MERIS, NOAA/AVHRR, MSG,
MODIS, MISR, etc ... are launched to characterize the biosphere at the global
scale. Biophysical products are thus derived from satellite data, such as the leaf
area index (LAI) that plays a key role in canopy functioning and soil-vegetation-
atmosphere transfers. Many algorithms, generally dedicated to one sensor, have
been developed to derive LAI products from reflectance data. Data are now
acquired (soil measurements as well as satellite data) and processed to validate
those algorithms and provide an estimate of the associated uncertainty. The
MODLAND (for the EOS platform) and VALERI (for European sensors) projects
both consist in the development of a network of validation sites for large swath
satellite data that are representative of the Earth surface (agricultural areas,
boreal or tropical forests, sparse vegetation,...).
  Considering that the lowest spatial resolution for large swath satellite sensors is
7km (POLDER), the validation sites cover 10km² areas. Exhaustive LAI
measurements at this scale is a difficult task since these ground acquisitions are
very local (about few meters). In the frame of the VALERI project, a spatial
sampling strategy is developed to allow the extension of local measurements to
the whole area observed by the sensors, using high spatial resolution data
(SPOT). The aim of this study is to provide a high spatial resolution LAI map for
the whole 10km2 area from a selection of ground measurements, as well as the
associated error of estimation. We compare three geostatistical methods: (1) LAI
ground measurement ordinary kriging, (2) kriging of the error between measured
LAI and estimated LAI from SPOT data and (3) co-located kriging. In this study,
both LAI and associated error of estimation maps are compared using these three
geostatistical methods. One validation site corresponding to an agricultural area
was considered here. The high spatial resolution LAI maps will then allow to
derive low spatial resolution maps (from 250m for MERIS to 7km for POLDER)
to evaluate the algorithms of LAI estimation from reflectance data.

1  - INTRODUCTION

In the very next years, a range of large swath satellite data such as AVHRR, VEGETATION,
POLDER, SeaWifs, MERIS, AATSR, MSG, MODIS, MISR will concurrently fly over the Earth
surface. These sensors have potential to estimate the key biophysical variables, such as leaf area
index, used as inputs, in both Soil-Vegetation-Atmosphere Transfer models and Net Primary
Production models. Up to now, large swath sensors were used to produce global maps of these
biophysical products through empirical relationships derived from spectral indices. However, these
relationships provide generally poor accuracy. This is the reason why new algorithms, based on
physical model inversion techniques such as look-up-tables or neural networks, were developed in
synergy with sensor technology improvements. Considering the complexity of the biophysical
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processes involved in the satellite signal, the only way to ensure a proper validation of biophysical
products is to perform an actual direct validation of these algorithms by comparing LAI ground
measurements to estimates from actual satellite data [Justice 2000].
The objective of the VALERI (VALidation of European Remote sensing Instruments) project is to
develop a network of validation sites over the Earth surface and a methodology designed to directly
measure the biophysical variables of interest at a proper spatial and temporal scales. This allows the
evaluation of existing algorithms as well as the intercomparison between sensors and algorithms. The
main difficulty in the validation of large swath sensors products is to provide ground measurements
at low spatial resolution (typically from 250m for MERIS or MODIS to 7km for POLDER), since
ground measurements are generally local and represents few meters. It is therefore not feasible to
exhaustively sample the whole area corresponding to one large swath pixel. The aim of this study is
thus to define a ground sampling strategy based on the combination of ground measurements and
high spatial resolution remote sensing data. It can be divided into four steps:

1. Segmentation of a high spatial resolution image (SPOT, TM) of the validation site, allowing
to identify the main class types in the image to design a ground measurement sampling
strategy for each class.

2. Ground measurements of the leaf area index. A maximum set of 50 high spatial resolution
pixel is sampled compatibly with manpower resources and time.

3. Spatial extension of the ground measurements to the whole site thanks to the high spatial
resolution image.

4. Evaluation of the leaf area index at the large swath sensor resolution.
The first year of the VALERI project was devoted to the refinement of the methodological aspects.
For this purpose, four sites have been sampled:
•  Romilly an agricultural area in the north of France,
•  Järvselja, a mixed forest in Estonia,
•  Nezer Forest in the south west of France made of pine trees, and
•  Gourma, a semi-desertic area in Mali, with grass and very sparse tree cover.
However, this preliminary study will concentrate on the Romilly site only. In the same way, lthough
VALERI is dedicated to LAI, fAPAR, fCover, albedo and Chlorophyll content products, the present
study is restricted to LAI for the demonstration.

Figure 1. left: SPOT image of the Romilly VALERI site (Red : XS3, Green: XS1, Blue: XS2). Right:
the local LAI2000 measurements (the stars) organized along a 20m long cross. The vertical lines
represent the row direction.
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2  - MATERIEL AND METHODS

The 10km by 10km Romilly site is an agricultural area composed of winter crops (wheat,
barley, pea, alfalfa, rape-seed, hemp, poppy) and summer crops (maize, sugar beet, sunflower,
potato) and few urban and woody zones (figure 1).
A SPOT-4 image acquired in May 2000 allowed to define a simple sampling strategy by dividing the
area into 49 1.4km-size cells. In each sub-area, at least one field was selected for ground
measurements. The field was chosen to characterize the main crop in the cell, and also to approach
the proportion of the considered crop within the whole area. Except for rape-seed, 12 local cross-
shaped measurements of LAI2000 were made in the 49 fields corresponding to the 49 cells (figure 1).
Each measurement is composed of one above and four below canopy measurements. The
measurements are distant from 4m to each other, leading to a 20m long cross. In case or row crops,
the 20m cross is always placed diagonally to the rows. The GPS positioning is achieved at the center
of the cross, with 1m accuracy in 95% of the points. The measurements were performed at more than
40m from the field edges, except for rape-seed crops that were too dense to penetrate inside. For
rape-seed, measurements have been acquired on the field edge (no cross shape).

3  - STATISTICAL AND GEOSTATISTICAL DATA ANALYSIS

A second SPOT-1 image has been acquired in June 2000. Due to some problem during the
acquisition, we could only get half the whole area. In this study, we directly work on the digital
counts of the images, and thus, the image is not corrected from atmospheric effects. Woody areas
(that have not been sampled) and urban zones are masked. The statistical analysis of the image shows
classical results. Red and green bands are strongly correlated (correlation coefficient of 0.96) since
those bands are quite close. Correlation is lower between visible and near infrared domains (-0.41 for
red and –0.19 for green band). This is confirmed by principal component analysis performed on the
whole image (Table 1). For the first axis, weights corresponding to the red and green bands are quite
similar and negative while positive and smaller for the near infrared. The second axis shows the
reverse situation. The two first axes explain more than 99% of the variability of the digital counts,
which shows high redundancy of the information in the visible.

Inertia (%) NIR Red Green
Axe 1 70 0.37 -0.68 -0.64
Axe 2 29 0.91  0.12  0.39
Axe 3  1 0.19  0.72  -0.66

Table 1. Principal component analysis between SPOT bands on Romilly site.

To better describe the spatial structure of the image and the measurements, experimental variograms
were also computed.
For the Romilly SPOT image, the isotropic variogram showed no trend differences as compared to
the directional ones (along raw or along column). To reduce computation time, we thus decided to
consider only directional, direct and crossed variograms (equation 3.1)
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where Zi is the digital count in the band i, h is the distance between two pixels of the image, and N(h)
the number of couples (x,x+h) in the image.

Results show that the direct variograms are not very different between bands, except the sill value,
which is higher for bands with high-level digital counts. The within field variability that can be
approximated by the variogram value for short distances is much lower than the between field
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variability (see figure 2 for an example with the near infrared). The crossed variograms between
visible and near infrared bands, did not show particular patterns. Conversely, the crossed variogram
between red and green bands (figure 2) show correlations for short distances (<20 pixels).
The LAI experimental variogram was first computed on the elementary 49x12 points measured within
the crosses. This allowed the estimation of a spherical covariance model (range: 80m, sill:0.72m, and
nugget:0.16), which was used to estimate the mean LAI for each cross by ordinary kriging. The
correlation coefficient between this estimation and the actual mean LAI value is 0.98. As there is no
significant difference, we decided to use only the mean LAI values computed over the 12
measurements of each cross.

Figure 2. Experimental directional direct (left) and crossed (right) variograms computed for Romilly
The solid line corresponds to the experimental variance (or covariance) value.

4  - GEOSTATISTICAL METHODS TO DERIVE LAI MAP
To derive LAI maps from few ground measurements, three geostatistical methods [Wackernagel 95]
were tested: ordinary kriging, kriging the residual and co-kriging. This was investigated over a 3km
by 3km sub-area within the 10 by 10 original site because of the shift of SPOT image from the initial
site.

4.1 - Ordinary kriging
The first step was to model the spatial covariance, using LAI measurements. As the 49 LAI values
measured was insufficient to directly compute the variogram, we approximated the LAI variogram
from a combination of the SPOT image and the LAI measurements. For this purpose, a supervised
classification is primarily applied to the whole SPOT image (7 classes). Each class was associated to
the average LAI value measured within this class. Variograms computed on this synthetic image
show a range at 300m. Results show that the variogram can be modeled as the sum of two spherical
models corresponding respectively to short distances (<300m, representing the discontinuities
between fields) and longer distances (300m<d<2000m). This variogram is finally used to estimates
the LAI map by ordinary kriging of the LAI measurements.

4.2 - Kriging the residual.
Different relationships between SPOT data and LAI have been considered (exponential, linear) and
the best result is obtained using a simple multi-linear regression (Eq 4.21). This relationship is valid
for canopies, i.e. for LAI > 0.0. LAI is set to 0.0 elsewhere (bare soil, buildings, .…).

86.0RMSE,026.0028.0Re009.0590* =−++= GreenNIRd.LAI          (4.21)
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The residual error ε∗  is the difference between LAI and LAI* estimated using eq. (4.21). This error is
known at the 49 cross measurement points:

)()()( ** iii vLAIvLAIv −=ε                                                      (4.22)
where LAI* is given by equation 4.21. The spatial covariance model of the error )(* ivε , was
determined assuming that the residual error is the sum of 3 independent errors:
(1) a spatial component (linked to soil influence for example),
(2)  a component linked to the measurement itself (LAI2000 instrument, raw effect) which remains

the same inside a vegetation class
(3)  a component linked to the error of the LAI estimation by the average LAI measured on the 12

points of the cross.
We finally applied ordinary kriging to )(* ivε .

4.3 - Colocated kriging.
Because only few ground measurements are available, prior information, such as SPOT data, would
be welcome to improve the estimation. The co-located kriging has then been applied by using LAI as
the principal variable and estimated LAI* as the secondary variable. The problem was to model the
crossed covariance between LAI and LAI* as the secondary variable. This was achieved using a co-
regionalisation linear model [Goovaerts 97].

Figure 3. LAI maps over the 3*3km² obtained using ordinary kriging (a), kriging the re
co-located kriging (c). LAI values ranging from green (low) to red (high).

4.4 - Results
Results for the 3 methods are presented in figure 3. Ordinary kriging is not 

since it relies only on few ground measurements (7 for this 3km by 3km area) that ar
representative of the whole Romilly area. It was used here just as a base line method. 
methods introduce a priori information, using high spatial resolution satellite data a
knowledge of the crossed covariance model. In the case of co-located kriging, kriging w
principal variable (LAI) is quite low (10%), showing that the spatial information pr
SPOT image is prevalent. This is not surprising according to the low density o
measurements. The main interest in residual kriging is that the relationship *f bet
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it has been shown that linear regression provides the best fitting.
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5  - CONCLUSION

The final step of this study was to provide a LAI map at 1km resolution characteristic of the
VEGETATION sensor, using the 3 previously described geostatistical methods. The low spatial
resolution estimates of LAI was computed by aggregation of the high spatial resolution estimates
using the arithmetic average. For the first method, block kriging was used to provide the 1km LAI
map as well as the kriging variance. The computation of kriging variance for the two other methods
is much more complex and details can be found in [de Beaufort 2000]. Results show little difference
between co-located and residual kriging in terms of LAI and an overestimation for ordinary kriging as
compared to the other methods (figure 4). If we consider the kriging variances, the most interesting
method seems to be the co-located kriging.

Figure 4. On the left, LAI aggregation for the 9 VEGETATION pixels constituting the 3km by 3km
sub-area. On the right, kriging variance for the three methods.

We thus propose the co-located kriging as the most efficient method. However, in the frame of the
VALERI project, different types of canopies have to be considered. It is therefore necessary to test
the 3 methods on the other sites. We also propose to reduce the 10km by 10km areas to 3km by 3km
to allow better sampling and be more confident in the kriging methods.
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