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Abstract

The monitoring of earth surface dynamic processes requires global observations of the structure and the functioning of vegetation. Moderate
resolution sensors (with pixel size ranging from 250 m to 7 km) provide frequent estimates of biophysical variables to characterize vegetation such
as the leaf area index (LAI). However, the computation of LAI from moderate resolution remote sensing data induces a scaling bias on the LAI
estimate if the moderate resolution pixel is heterogeneous and if the transfer function that relates remote sensing data to LAI is non-linear.

This study provides a model to evaluate and correct the scaling bias. The model is built first for a univariate semi-empirical transfer function
relating LAI directly to NDVI. The scaling bias is a function of (i) the degree of non-linearity of the transfer function quantified by its second
derivative and (ii) the spatial heterogeneity of the moderate resolution pixel quantified by the variogram of the high spatial resolution (20 m)
NDVI image. Then, the model is extended to a bivariate transfer function where LAI is related to red and near infrared reflectances. The scaling
bias depends on (i) the Hessian matrix of the transfer function and (ii) the variograms and cross variogram of the red and near infrared reflectances.

The scaling bias is investigated on several distinct landscapes from the VALERI database. Adjusting for scaling bias is critical on crop sites
which are the most heterogeneous sites at the landscape level. Regarding the univariate transfer function, the magnitude of the scaling bias
increases rapidly with pixel size until this size is larger than the typical spatial scale of the data. For the bivariate transfer function, it results from
the addition of several components that may add up or cancel each other out. It is thus more difficult to analyze.

The accuracy of the model to estimate the scaling bias is discussed. It depends mainly on the ability of the variograms and cross variogram to
represent the local dispersion variances and covariance within the moderate resolution pixel. The model is generally highly accurate at 1000 m
spatial resolution for the univariate transfer function and less accurate for the bivariate transfer function.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Among the several components of the Earth system,
processes related to the land surface are the most variable
(Tian et al., 1998; Asner & Townsend, 2000). They are also
poorly quantified at global scale (Houghton et al., 2001). The
modeling of these processes requires state variables provided at
the relevant spatial and temporal resolution either to force the

model or to control its temporal trajectory with assimilation
techniques (Cayrol et al., 2000). Among these state variables,
the leaf area index (LAI), defined as half the total developed
area of leaves per unit ground horizontal surface area (Chen &
Black, 1992), characterizes the structure and the functioning of
vegetation. It can be spatially estimated from remotely sensed
radiance data using a transfer function derived either from a
radiative transfer model (Weiss & Baret 1999) or from the
calibration of a semi-empirical relationship (Sellers, 1987; Baret
& Guyot, 1991). To resolve rapid changes of vegetation status
and amount under both the influence of climate and human
activities, relatively high revisit frequency observations are
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required, currently provided by moderate resolution sensors
with pixel size ranging from 250 m to 7 km (e.g. MODIS/
TERRA-AQUA, MERIS/ENVISAT, VEGETATION/SPOT,
POLDER/ADEOS-PARASOL).

LAI is a key player within a broad range of land surface
models including vegetation (Moulin et al., 1998; Cayrol et al.,
2000), biogeochemical (Running et al., 1999) or global
atmospheric circulation models (Avissar & Chen, 1993).
Improving and assessing the accuracy of LAI estimates is
therefore required (Morisette et al., 2002, 2006; Baret et al., in
press). Several sources of uncertainties degrade its estimation
from remote sensing data (Hall et al., 1992; Friedl et al., 1995;
Myneni et al., 1995; Dungan, 2002). The transfer function
algorithm is associated with uncertainties originating from the
calibration of the semi-empirical model, the assumptions related
to the radiative transfer model and the inversion algorithm, or
the applicability of the algorithm to a range of vegetation types,
seasons and locations. Radiometric uncertainties attached to the
radiance or reflectance measurement used as input in the
transfer function are due to the sensor system, residual
atmospheric effects or cloud contamination. Finally, the
application at moderate resolution of a transfer function
calibrated at high resolution induces a scaling bias on the LAI
estimate if the transfer function is non-linear and the moderate
resolution pixel is heterogeneous (Raffy, 1994; Friedl et al.,
1995; Hu & Islam, 1997; Heuvelink & Pebesma, 1999; Lovejoy
et al., 2001). This work focuses on the analysis of this last
source of uncertainty.

The cause of the scaling bias is illustrated on a synthetic
example of a semi-empirical transfer function between the
normalized difference vegetation index (NDVI) and the LAI
(Fig. 1). For the clarity of exposition, the non-linearity of the
NDVI as a function of the near infrared and red reflectances is
not taken into account in this demonstrating example. The
transfer function f is calibrated at high spatial resolution
(defined in this study as a pixel size of 20 m) at which the data
(NDVIA and NDVIB) are assumed to be homogeneous within
each pixel. The exact value of the LAI (LAIν

exa) at the moderate
resolution ν is obtained by first applying f at high spatial
resolution and then by aggregating the result at the moderate
resolution ν (path A in Fig. 1). However, the direct application
of f at the moderate resolution ν (LAIν

app) underestimates the
exact LAI value (path B in Fig. 1) because of both the non-
linearity of f and the spatial heterogeneity of the moderate
resolution pixel.

The scaling bias is rarely taken into account in non-linear
estimation processes of LAI at moderate spatial resolution
despite the existence of sometimes large intra-pixel spatial
herogeneity, especially in some agricultural landscapes (Garri-
gues et al., 2006). The scaling bias on LAI may reach up to 50%
of the exact LAI value (Friedl, 1997; Chen, 1999; Weiss et al.,
2000; Tian et al., 2002). To limit the influence of spatial
heterogeneity on the non-linear estimation processes of LAI, a
rational approach is to use a proper spatial resolution at which
the variability of the landscape is captured by the sensor and the
intra-pixel variability is minimized (Townshend & Justice,

Fig. 1. Effect of the intra-pixel spatial heterogeneity on the non-linear estimation of LAI at moderate resolution. f is a semi-empirical transfer function relating LAI and
NDVI. NDVIA and NDVIB are the high spatial resolution homogeneous NDVI data. LAIA and LAIB are their corresponding LAI values. LAIν

exa, defined as the
average between LAIA and LAIB, is the exact LAI value at the moderate resolution ν. NDVIm, defined as the average between NDVIA and NDVIB, is the
heterogeneous NDVI data at the moderate spatial resolution ν. LAIν

app, computed from the direct application of f to NDVIm, is the approximated LAI at the resolution
ν. eν, defined as the difference between LAIν

app and LAIν
exa, is the LAI scaling bias at the moderate resolution ν.
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1988; Marceau et al., 1994; Garrigues et al., 2006). This will
generally require relatively high spatial resolution observations
for most landscapes (Garrigues et al., 2006). However, these
observations are not currently acquired at a sufficiently high
temporal frequency to resolve vegetation changes. In addition,
most of the currently available LAI products are derived from
moderate resolution data (Morisette et al., in press). While finer
spatial resolution products associated with high temporal
frequency should appear in the coming years, long time series
of LAI covering past observations are mandatory for a range of
applications (Myneni et al., 1997). The spatial heterogeneity has
therefore to be explicitly taken into account in non-linear
estimation processes.

Several authors have considered the problem of correcting
the scaling bias. Assuming a uniform spatial distribution of the
radiometric variables within the moderate resolution pixel,
Raffy (1994) shows that the range of the possible values of
LAIν

exact is defined by the upper and lower limits of the transfer
function convex hull. The scaling bias is then estimated as half
of the amplitude of this range. This approach assumes that all
possible values of LAI are equally likely and that the input
variables within the pixels are uncorrelated. These assumptions
are inappropriate to model the spatial distribution of the input
variable within a moderate resolution pixel. They largely
overestimate the actual spatial variability and lead to over-
estimated scaling bias. An alternative method based on the
disaggregation of moderate resolution pixels (Faivre & Fischer,
1997) consists in retrieving the radiometric values of several
homogeneous patches constituting the pixel. This is generally
achieved using a high spatial resolution land cover map. Faivre
and Fischer (1997) showed that this method is appropriate on
crop sites when applied over an important set of pixels and an
updated high spatial resolution land cover map. In a third
approach, a Taylor expansion of the transfer function is used to
compute analytically the scaling bias as a function of the intra-
pixel spatial heterogeneity and the degree of non-linearity of the
transfer function (Hu & Islam, 1997; Chen, 1999; Pelgrum,
2000). The studies developing this approach differ in the
metrics used to quantify the intra-pixel spatial heterogeneity.
Most studies used an empirical metric of the spatial hetero-

geneity for each moderate resolution pixel. Garrigues et al.
(2006) show that variogram modeling is an efficient method to
characterize the loss of image spatial variability captured by the
sensor as its spatial resolution decreases. The variogram of high
spatial resolution data can therefore be used to quantify
explicitly the mean spatial heterogeneity within the moderate
spatial resolution pixels covering the same area as the high
spatial resolution image. In this paper, an approach based on
variogram modeling of high spatial resolution radiometric data
is developed to correct the scaling bias. Since variogram
modeling may be applied to several variables, this approach
may be extended to estimate the scaling bias associated with a
multivariate transfer function.

Several authors have reported that the magnitude of the scaling
bias increases with both the degree of non-linearity of the model
and the heterogeneity of the input surface (Raffy, 1994; Friedl,
1997; Hu& Islam, 1997; Chen, 1999). In these studies, the scaling
bias was investigated either on simulated landscape images or on
a limited number of land cover types. In this paper, the scaling bias
associated with the non-linear relationship between NDVI and
LAI is quantified over several types of landscape. In addition, few
studies have analyzed how the scaling bias propagates through the
composition of several non-linear models. This issue will be
specifically addressed in this paper.

The VALERI database (Validation of Land European
Remote sensing Instruments), presented in the second section,
is used to investigate the scaling bias associated with the non-
linear estimation process of LAI over several types of
landscapes. The third section provides the theoretical frame-
work to estimate the scaling bias: the model is first built for a
semi-empirical transfer function relating directly LAI to NDVI;
then generalized to a bivariate transfer function where LAI is
directly derived from red and near infrared reflectances. In
Section 4, the magnitude of the scaling bias is related to the
spatial heterogeneity characteristics of the landscapes and the
propagation mechanisms generating the LAI scaling bias when
LAI is derived from the red and near infrared reflectances are
analyzed. In Section 5, the accuracy of the proposed correction
of the LAI scaling bias is assessed on the VALERI database in
the univariate and bivariate case.

Table 1
Database (detailed information on each site is available on the VALERI website www.avignon.inra.fr/valeri)

Site name Biome (FAO classification) Date Latitude Longitude mNDVI σNDVI

Fundulea01 Cropland May 44.41 26.58 0.51 0.23
Alpilles01 Cropland March 43.81 4.74 0.41 0.19
Barrax03 Cropland July 39.06 2.10 0.29 0.19
SudOuest02 Cropland July 43.51 1.24 0.50 0.17
Alpilles02 Cropland July 43.81 4.74 0.38 0.16
Gilching02 Cropland and mixed forest July 48.08 11.33 0.60 0.12
Laprida01 Grassland November 36.99 −60.55 0.62 0.09
Larzac01 Grassland July 43.95 3.12 0.49 0.06
Jarvselja01 Mixed forest July 58.29 27.29 0.82 0.05
Nezer01 Needleleaf forest (pine forest) June 44.51 −1.04 0.66 0.06
Counami01 Broadleaf forest (tropical forest) October 05.35 53.25 0.69 0.03
Puechabon01 Closed shrubland (Mediterranean vegetation) June 43.72 3.65 0.54 0.10

Date is the acquisition month of the SPOT-HRV scene. mNDVI and σNDVI are the mean and standard deviation of the NDVI image.
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2. Description of the data

The data used here are part of the VALERI database which
provides high spatial resolution (20 m) SPOT-HRV scenes for
several landscapes sampled through the world (Baret et al., in
press). The red (0.61–0.67 μm), denoted r(x), and near infrared
(0.78–0.89 μm), denoted p(x), reflectances are derived from the
SPOT-HRV data. For each 20 m pixel x, an NDVI value,
denoted z(x), is computed according to the function gp,r:

gp;r : z xð Þ ¼ pðxÞ − rðxÞ
pðxÞ þ rðxÞ ð1Þ

The scenes are georeferenced in the UTM/WGS84 projec-
tion. They are not contaminated by clouds except in the tropical
forest image for which a cloud mask was applied. They are not
corrected for atmospheric scattering and absorption. But, for
most scenes, the atmospheric effects are low in the red and near-
infrared bands (Baret et al., in press).

For this study, 12 sites with distinct landscape spatial hetero-
geneity (Table 1) were selected. The sites have flat topography,
a standard size of 3000 m*3000 m and they contain one or two
types of vegetation.

To generate the LAI map on each site, a semi-empirical
transfer function f (Eq. (2), Baret and Guyot, 1991) is applied to
the high spatial resolution NDVI image:

f : LAI ¼ −1
KNDVI

log
zðxÞ−NDVIl

NDVIs−NDVIl

� �
ð2Þ

The extinction coefficient KNDVI and the asymptotic value
NDVI∞ are estimated from several simulations of a radiative
transfer model (SAIL, Verhoef, 1984) that accounts for a broad
range of canopy architectures (Weiss et al., 2002). The NDVI
soil value NDVIs is computed empirically on each site by
averaging the NDVI value of pixels identified as bare soil. The
NDVI values are assumed to be within the interval [NDVIs,
NDVI∞[ on which f is continuous and differentiable. The LAI
computed from the transfer function f is defined assuming a
random spatial distribution of the vegetation elements in
agreement with the radiative transfer model on which f was
established. In this paper, the transfer function f is used
specifically to investigate the scaling bias at moderate spatial
resolution. Therefore, its accuracy to estimate the LAI will not
be discussed here.

Although there is still some possible spatial variability within
the high spatial resolution pixel, this will not be considered
because it was not accessible. The transfer function f is
therefore assumed to be without any scaling bias at 20 m spatial
resolution.

3. Scaling bias modeling

3.1. Univariate model

High spatial resolution NDVI data are aggregated to coarser
resolutions ν (60m, 100m, 200m, 300m, 500m, 1000m) using a
perfect rectangular point spread function (Eq. (3)). The scaling

bias caused by the non-linearity of the NDVI as a function of the
near infrared and red reflectances is not considered in this
univariate model, but will be the subject of the next section. This
amounts to computing the NDVI of the moderate resolution pixel
ν as the simple average of the n high spatial resolution NDVI
values z(xα),

zm ¼ 1
n

Xn
a¼1

z xað Þ; ð3Þ

where zν is the aggregated NDVI value at the moderate resolution
ν and n is the number of high resolution pixels within ν. As
explained in the Introduction, the application of f at moderate
resolution leads to an approximated LAI value LAIν

app:

LAIappr ¼ f ðzmÞ ð4Þ

The exact LAI value LAIν
exa is computed by first applying f

at high spatial resolution and then by aggregating the result at
the moderate resolution ν:

LAIexar ¼ 1
n

Xn
a¼1

f z xað Þð Þ ð5Þ

The difference between LAIν
app and LAIν

exa is the univariate
scaling bias eν:

em ¼ f zmð Þ − 1
n

Xn
a¼1

f z xað Þð Þ ð6Þ

We propose a model, based on the approach developed by
Hu and Islam (1997), to estimate this scaling bias. Assuming that
z(x) varies slowly within ν, the scaling bias eν is approximated
by a second order Taylor development of f around zν:

emc−
1
n

Xn
a¼1

f V zmð Þ z xað Þ− zmð Þ− 1
n

Xn
a¼1

f WðzmÞ
2

z xað Þ− zmð Þ2

ð7Þ
In Eq. (7),

1
n

Xn
a¼1

f V zmð Þ z xað Þ− zmð Þ¼ f V zmð Þ 1
n

Xn
a¼1

z xað Þ− zmð Þ
 !

¼ 0 ð8Þ

and

1
n

Xn
a¼1

ðzðxaÞ−zmÞ2 ¼ s2loc xjmð Þ ð9Þ

is the local dispersion variance which quantifies the spatial
variability of z(x) within ν (Garrigues et al., 2006). The scaling
bias eν, is thus approximated by Eq. (10):

emc−
f WðzmÞ
2

s2loc xjmð Þ ð10Þ

Therefore, it depends on two multiplicative factors: (i) the
degree of non-linearity of the transfer function at zν, characterized
by f ″(zν), and (ii) the local spatial heterogeneity of the NDVI
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within the moderate resolution pixel given by sloc
2 (x|ν). Therefore,

eν is null either when f is linear or when the moderate resolution
pixel is homogeneous. It is negative for a convex function such as
the transfer function f in Eq. (2). Since sloc

2 (x|ν) is generally not
known at moderate resolution (unless a simultaneous high spatial
resolution image is available), a priori information about the intra-
pixel spatial heterogeneity is required to estimate the scaling bias.

In the framework of second order stationary random functions
(Chilès & Delfiner, 1999; Wackernagel, 2003), z(x) is consider-
ed as a realization of a (second order stationary) random function,
Z(x). The variogram, denoted γ(h), of Z(x) describes the
variability between two pixel values separated by a distance h:

gðhÞ ¼ 0:5Var½Zðxþ hÞ−ZðxÞ� ð11Þ
In this framework, sloc

2 (x|ν), eν, and zν are realizations of
random variables, respectively denoted Sloc

2 (x|ν), Eν, and Zν.
We define the theoretical scaling bias eν,th as the mathematical
expectation of Eν conditional to Zν:

em;th ¼ E EmjZm½ � ¼ −
f WðZmÞ

2
E S2loc xjmð Þ� �

¼ −
f WðZmÞ

2
g m; mð Þ ð12Þ

In Eq. (12), γ(ν,ν) is the theoretical dispersion variance of Z(x)
within the domain ν (Chilès & Delfiner, 1999; Garrigues et al.,
2006). It is defined as the mathematical expectation of the local
dispersion variance Sloc

2 (x|v) and is equal to

g m; mð Þ ¼ 1

jmj2
Z
xam

Z
yam

gðjx−yjÞdxdy ð13Þ

where |x−y| represents the distance between the points x and y
within the domain ν. It can easily be computed once a model of
variogram has been fitted to the experimental variogram
computed on the high spatial resolution image. It quantifies the
mean spatial heterogeneity within the moderate spatial resolution
pixels ν covering the same area than the high spatial resolution
image. Note thatγ(ν,ν) can also be interpreted as the loss of image
variability when aggregating the high spatial resolution pixels to
the moderate spatial resolution ν.

The corrected LAIν
corr at moderate spatial resolution is

computed by Eq. (14).

LAIcorrr ¼ LAIappr −em;th ð14Þ
To assess the accuracy of this correction, we use the relative

gain of the root mean square error (RMSE), RRMSEν:

RRMSEr ¼ RMSEapp
r −RMSEcorr

r

RMSEapp
r

; ð15Þ

where RMSEm
app and RMSEν

corr are the RMSE of the LAIν
app and

the LAIν
corr relative to LAIν

exa, respectively.

3.2. Bivariate model

The previous model developed for a transfer function of a
single radiometric variable (NDVI) may be extended to a

multivariate transfer function. In this work, we provide the
model for a bivariate transfer function but generalization to more
than two variables is direct. Replacing the NDVI by its formula
(Eq. (1)) in the function f (Eq. (2)), we define the bivariate transfer
function fp,r:

fp;r : LAI ¼ −1
KNDVI

log

pðxÞ−rðxÞ
pðxÞþrðxÞ−NDVIl
NDVIs−NDVIl

 !
ð16Þ

We assume that the parameters NDVIs and NDVI∞ are such
that:

NDVIs V
pðxÞ−rðxÞ
pðxÞ þ rðxÞ < NDVIl ð17Þ

As a result, fp,r is continuous and differentiable for both
variables p and r. Let us denote eν,biva the bivariate scaling bias
between LAIν,biva

app , estimated using the moderate resolution red
and near infrared reflectances, and LAIν

exa,

em;biva ¼ fp;r pm; rmð Þ− 1
n

Xn
a¼1

fp;r p xað Þ; r xað Þð Þ ð18Þ

where pν and rν are the variables p and r aggregated at the
moderate resolution ν.

The scaling bias eν,biva is approximated by a second order
Taylor development of fp,r around the vector of variables (pν, rν).
Then, using the same arguments than in the univariate case, the
bivariate scaling bias is approximated by:

em;biva≈−0:5
A2fp;r
Ap2

pm; rmð Þs2loc;p xjmð Þ þ A2fp;r
Ar2

pm; rmð Þs2loc;r xjmð Þ
�

þ2
A2fp;r
ApAr

pm; rmð Þcloc;p;r xjmð Þ
�

ð19Þ

In Eq. (19), A2fp;r
Ap2 ,

A2fp;r
Ar2 , and

A2fp;r
ApAr are the components of the

Hessian matrix of the bivariate function fp,r. For the transfer
function considered in (16), A2fp;r

Ap2 pm; rmð Þ is negative, A2fp;r
Ar2 pm; rmð Þ

is positive and A2fp;r
∂p∂r pm; rmð Þ is negative. As in Eq. (10), sloc,p2 (x|ν)

and sloc,r
2 (x|ν) are the local dispersion variances of the high spatial

resolution variables p and r, respectively. In the multivariate
approach, it is also necessary to define the local dispersion
covariance between the high spatial resolution variables p and r,
cloc,p,r (x|ν):

cloc;p; r xjmð Þ ¼ 1
n

Xn
a¼1

p xað Þ−pmð Þ r xað Þ−rmð Þ ð20Þ

It quantifies the spatial co-variability between the high
spatial resolution variables p and r within the moderate reso-
lution pixel ν.

Contrary to the scaling bias of the univariate transfer
function f, the sign of the bivariate scaling bias eν,biva may not
be constant. It is the result of the interaction between the
Hessian matrix components of fp,r and the dispersion variances
and covariance of the near infrared and red variables.
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An estimator of the empirical bias is then built in the
framework of second order stationary random functions. The
theoretical scaling bias eν,biva,th is defined as the mathematical
expectation of the scaling bias random variableEν,biva conditional
to the vector of random variables (Pν, Rν),

er;biva;th ¼ E tEm;bivaj Pm;Rmð Þb

¼ −0:5
∂2fp;r
∂p2

Pm;Rmð Þgp m; mð Þ þ ∂2fp;r
∂r2

Pm;Rmð Þgr m; mð Þ
�

þ2
∂2fp;r
∂p∂r

Pm;Rmð Þgp;r m; mð Þ
�

ð21Þ

where γp(ν,ν) and γr(ν,ν) are the theoretical dispersion variances
of the variables p and r and γp,r(ν,ν) is the theoretical dispersion
covariance between p and r. They are computed from the double
integration (Eq. (13)) of the corresponding variograms and cross
variogram modeled together using the widely used linear
coregionalization model (Wackernagel, 2003).

4. Analysis of the scaling bias

In this section, the factors acting on the scaling bias are
analyzed in the light of the analytical model provided
previously.

4.1. Univariate scaling bias

The sign of the scaling bias eν associated with the transfer
function f is constant and negative (Section 3.1, Eq. (12)). In the
following, we evaluate its magnitude relative to LAIν

exa

quantified on each landscape and at a given spatial resolution
ν by its average over the scene (Figs. 2 and 3):

jerelν j ¼ 1
P

XP
i¼1

jemi j
LAIexari

ð22Þ

where P is the number of pixels νi covering the scene and eνi is
the scaling bias of the pixel νi.

The magnitude of the scaling bias is proportional to the intra-
pixel spatial heterogeneity quantified by the theoretical
dispersion variance γ(ν,ν) (Fig. 2), which increases with the
size of the pixel (Garrigues et al., 2006). As a result, the LAI
scaling bias is higher at 1000 m spatial resolution (Fig. 3,
maximum relative bias of 19%) than at 500 m spatial resolution
(Fig. 3, maximum relative bias of 12%).

The dispersion variance γ(ν,ν) is an increasing function of the
landscape spatial variability (Garrigues et al., 2006). In the
VALERI database, crop sites are more heterogeneous than natural
vegetation and forest sites at the landscape level (Fig. 2).
Consequently, the magnitude of the LAI scaling bias is larger on
crop sites (Fig. 3, relative bias between 10% and 19% at 1000 m
spatial resolution) than on natural vegetation sites (Fig. 3, relative
bias between 0.5% and 3% at 1000 m spatial resolution).

At a given spatial resolution, the dispersion variance depends
also on the ratio between the pixel size and the length scales of the
data, i.e. the extent of the spatial structures (i.e. patches) exhibited
by the image (Garrigues et al., 2006). When the size of the
moderate resolution pixel ν is larger than the extent of the spatial
structure, the spatial variability related to that spatial structure is
not captured by the sensor, thus increasing the spatial hetero-
geneity within ν. For example, at 500 m spatial resolution, the
length scale of Fundulea01 (781 m) is still detected in the image,
while on Alpilles01 an important spatial variability related to its
smaller length scale (268 m) is lost (Garrigues et al., 2006). For
this reason, the magnitude of the scaling bias is lower on
Fundulea01 than onAlpilles01 at 500m spatial resolution (Fig. 3).

Fig. 3. Average of the magnitude of the univariate scaling bias relative to
LAIν

exaðjerelν jÞ over each site as a function of spatial resolution ν. The solid lines
are cropland and the dashed lines are natural and forest vegetation sites.

Fig. 2. Average of the magnitude of the univariate scaling bias relative to
LAIν

exaðjerelν jÞ over each site as a function of the NDVI spatial heterogeneity γ(ν,
ν) within the moderate resolution pixel ν for several spatial resolutions (60 m,
100 m, 300 m, 500 m, 1000 m). The gray circles are natural and forest
homogeneous sites. The black squares represent heterogeneous cropland sites.
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But it increases considerably at 1000m spatial resolution at which
the Fundulea01 length scale, associated with a larger spatial
variability than Alpilles01, is no longer captured in the image.

The magnitude of the scaling bias increases also with the
degree of non-linearity of the transfer function f (Eq. (12)) which
is an increasing function of the NDVI. Hence, the magnitude of
the scaling bias increases with the NDVI value. For example, the
Jarvselja01 mixed forest site shows large NDVI values (between
0.6 and 0.9 with a mean NDVI equal to 0.82, Table 1).
Consequently, its scaling bias magnitude is close to that of
Puechabon01 (Fig. 3) despite its low NDVI dispersion variance
compared to the NDVI dispersion variance of Puechabon01.
However, although most of the forest sites have large NDVI
values, the magnitude of their scaling bias is low because they are
homogeneous (small values of γ(ν,ν), Fig. 2). On cropland sites,
the range of NDVI values is larger (between 0.2 and 0.8 on
Fundulea01). Hence, on heterogeneous pixels with low NDVI
values (bare soil field), the low degree of non-linearity limits the
magnitude of the scaling bias while on heterogeneous pixels with
high NDVI values (vegetation field) the high degree of non-
linearity increases the magnitude of the scaling bias.

As a conclusion, the magnitude of the scaling bias is large on
crop sites which are the most heterogeneous sites at the landscape
level. It increases rapidly with pixel size until this size is larger
than the typical length scale of the data, i.e. between 250 m and
1000m spatial resolution for the cropland sites under study. Since
it is amplified by the degree of non-linearity of the transfer
function, it may change according to the type of transfer function
used. Finally, the spatial heterogeneity and the NDVI values
depend on the phenological state of the vegetation. As a result, the
magnitude of the scaling bias will also vary seasonally.

4.2. Bivariate scaling bias

The sign of the scaling bias eν,biva associated with the transfer
function fp,r may be non-constant (Section 3.2, Eq. (21)). In the

Fig. 4. Average of the magnitude of the bivariate scaling bias relative to
LAIν

exaðjerelν;bivajÞ over each site as a function of the spatial resolution. The
solid lines are cropland and the dashed lines are natural and forest vegetation
sites.

Fig. 5. Characterization of the spatial heterogeneity of the near infrared and red
reflectances at moderate spatial resolution: (a) Dispersion variance of the near
infrared γp(ν,ν) versus spatial resolution. (b) Dispersion variance of the red γr(ν,
ν) versus spatial resolution. (c) Dispersion covariance γp,r(ν,ν) between the near
infrared and the red versus spatial resolution.
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following, we evaluate its magnitude relative to LAIν

exa quantified
on each landscape and at a given spatial resolution ν by its average
over the scene (Fig. 4):

jerelm;bivaj ¼
1
P

XP
i¼1

jemi;bivaj
LAIexari

ð23Þ

where P is the number of pixels νi covering the scene and eνi,biva
is the bivariate scaling bias of the pixel νi.

The magnitude of the scaling bias associated with the
bivariate transfer function fp,r is generally larger on crop sites
than on natural and forest sites (Fig. 4), in agreement with
results obtained with the univariate transfer function f. It
increases with the pixel size and it is mainly explained by the
values of the dispersion variances and dispersion covariance of
the red and near infrared variables (Fig. 5). However, on some
landscapes, it is different than the scaling bias associated with
the univariate transfer function. Since the description of spatial
heterogeneity depends on the nature of the underlying radio-
metric variables, the dispersion variances of the red and near
infrared variables are different than the NDVI dispersion
variance. For example, on Barrax03, the red reflectance is
very variable over the large bare soil area since it is sensitive to
the soil properties while the NDVI is not. As a result, the
dispersion variance of the red, γr(ν,ν), increases the magnitude
of the bivariate scaling bias compared to the magnitude of the
univariate scaling bias. Besides, the bivariate scaling bias results
from the sum of several terms which may add up or compensate
for one another (Eq. (21)). On Fundulea01, the mosaic of
vegetation fields with high NDVI values and bare soil fields

with low NDVI values explains the high variability of the near
infrared γp(ν,ν) and the high dispersion covariance between red
and near infrared γp,r(ν,ν). The resulting magnitude of the
scaling bias is low since γp(ν,ν) is positive and associated with

the negative term ∂2fp;r
∂p2 Pm;Rmð Þ that compensates for the effect of

γp,r(ν,ν), which is negative and related to the negative term
∂2fp;r
∂p∂r Pm;Rmð Þ. Conversely, on Alpilles01, the dispersion variance
of the near infrared is lower than that of Fundulea01, while their
dispersion covariances γp,r(ν,ν) are similar. As a result, the
magnitude of the bivariate scaling bias is higher on Alpilles01
than on Fundulea01.

In contrast to the univariate transfer function, the analysis of
the magnitude of the scaling bias is more complex for a
bivariate transfer function. It is the result of the interaction
between the Hessian matrix components and the dispersion
variances and covariance of the near infrared and red variables.
The next section provides a further exploration of the
differences between the univariate scaling bias and the bivariate
scaling bias.

4.3. Propagation bias mechanisms

As mentioned in the previous section, the scaling bias of the
univariate transfer function f and the scaling bias of the bivariate
transfer function fp,r may show important discrepancies (Fig. 6).
For most of the sites, the magnitude of the bivariate scaling bias is
lower than the univariate one (e.g. difference up to 20% on
Fundulea01 at 1000 m spatial resolution), but for some sites, like
Barrax03 or Puechabon01, it is higher. At high spatial resolution,
the functions f and fp,r are equivalent and the aggregated result
leads to the same value of the LAIν

exa. However, their application
at moderate spatial resolution does not lead to the same LAIν

app

value. The NDVI is a non-linear function of the near infrared and
red reflectances. When the moderate resolution pixel is hetero-
geneous, the NDVI aggregated at moderate resolution which is
the input of the function f (left-hand side of Eq. (24)) differs from
the NDVI computed from the aggregated near infrared and red
reflectances which is the input of the function fp,r (right-hand side
of Eq. (24)):

1
n

Xn
a¼1

pðxaÞ− rðxaÞ
pðxaÞ þ rðxaÞ p

pm −rm
pm þ rm

ð24Þ

To understand the differences between the univariate scaling
bias associated with f and the bivariate scaling bias associated
with fp,r, we define fp,r as the compositing function of (Eq. (2)) f
and gp,r (Eq. (1)):

fp;r ¼ f Bgp;r ð25Þ

Because of their non-linearity, both f and gp,r engender a
scaling bias.

The difference between

NDVIexar ¼ 1
n

Xn
a¼1

pðxaÞ− rðxaÞ
pðxaÞ þ rðxaÞ ð26Þ

Fig. 6. Difference between the relative bivariate scaling bias eνi,biva
rel and the

relative univariate scaling bias eνi
rel as a function of the relative NDVI scaling bias

eνi,NDVI
rel for each 1000 m spatial resolution moderate resolution pixel of each
site. The black triangles represent the Fundulea01 site. The black squares
represent the Barrax03 site. The gray crosses are the other sites.
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and

NDVIappr ¼ pm − rm
pm þ rm

ð27Þ

is the NDVI scaling bias, denoted eν,ndvi. Its sign and its
magnitude depend on the dispersion variances and dispersion
covariance of the near infrared and red variables and on the
Hessian matrix components of gp,r (Eq. (21) applied to gp,r).
For the function gp,r,

∂2gp;r
∂r2 pm; rmð Þ and ∂2gp;r

∂p∂r are positive, while
∂2gp;r
∂p2 pm; rmð Þ is negative. Therefore, on Barrax03, the high value

of γr(ν,ν) generates a negative NDVI scaling bias. In contrast,
on Fundulea01, the high value of γp(ν,ν) and the high negative
value of γp,r(ν,ν) lead to a positive NDVI scaling bias. As
shown in the x-axis of Fig. 6, the magnitude of the NDVI
scaling bias is low (for most of the sites it is less than 4%)
compared to the magnitude of the LAI scaling bias (Fig. 3). This

Fig. 9. Local estimation of the univariate scaling bias over each 500 m moderate
resolution pixel of the Alpilles01 scene (cropland). (a) Difference between the
magnitude of the estimated scaling bias |eν,th| and the magnitude of the local bias
|eν|. (b) Difference between the theoretical dispersion variance γ (ν,ν) and the
local dispersion variance sloc

2 (x|ν) of the NDVI. (c) NDVI image at 500 m spatial
resolution (indicator of the degree of non-linearity of the transfer function f ).

Fig. 8. Relative gain of the RMSE (RRMSEν) associated with the univariate
model for each site at 200 m, 300 m, 500 m, and 1000 m spatial resolution.

Fig. 7. Correction of the univariate scaling bias on Alpilles01 site (cropland) at
ν=1000 m spatial resolution. LAIν

exa is the exact LAI; LAIν
app is the

approximated LAI before correction; LAIν
corr is the corrected LAI.
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is due to the lower degree of non-linearity of the function gp,r
than that of the function f.

As mentioned in Section 4.1, the univariate scaling bias eν
related only to the non-linearity between LAI and NDVI
(function f ) is negative and its magnitude depends on both the
dispersion variance of the NDVI and the second derivative of f.

The relationships between the bias eν,biva, ev , and eν,ndvi are
investigated empirically. We define the relative values of eν,biva
and eν to the exact LAI value (Eqs. (28) and (29)) and the
relative value of eν,ndvi to the exact NDVI value (Eq. (30))

erelr ¼ er
LAIexar

ð28Þ

erelr;biva ¼
er;biva
LAIexar

ð29Þ

erelr;ndvi ¼
er;ndvi

NDVIexar

ð30Þ

As shown in Fig. 6, the differences between the relative
bivariate scaling bias and the relative univariate scaling bias are

Fig. 11. Local estimation of the bivariate scaling bias over each 500 m moderate resolution pixel of the Alpilles01 scene. (a) Difference between the magnitude of the
estimated scaling bias |eν,biva,th| and the magnitude of the local bias |eν,biva|. (b) Difference between the theoretical dispersion variance γp(ν,ν) and the local dispersion
variance sloc,p

2 (x|ν) of the near infrared. (c) Difference between the theoretical dispersion variance γr(ν,ν) and the local dispersion variance sloc,r
2 (x|ν) of the red. (d)

Difference between the theoretical dispersion covariance γp,r(ν,ν) and the local dispersion covariance cloc,p,r(x|ν) between the near infrared and the red.

Fig. 10. Relative gain of the RMSE (RRMSEν) associated with the bivariate
model for each site at 200 m, 300 m, 500 m, and 1000 m spatial resolution.
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linearly explained by the relative scaling bias of the NDVI
(r2 =0.98). If the NDVI scaling bias eν,ndvi is negative (most of
the Barrax03 pixels), it increases the negative LAI scaling bias
eν. But, when the NDVI scaling bias eν,ndvi is positive (most of
the Fundulea01 pixels), it compensates for the negative LAI
scaling bias eν.

This work illustrates how the scaling biases propagate
through the composition of several non-linear models. They
may compensate for one another or add up. This mechanism
may be quantitatively important. For example, in the case under
study, a relative scaling bias of 10% on the first function may
decrease the scaling bias related to the second transfer function
by 20%. This result confirms other studies such as Friedl
(1997), who underlined that even a low bias related to LAI
increases the scaling bias of the energy fluxes estimated from a
non-linear function of LAI (transfer soil vegetation atmosphere
model).

Finally, in practice, the estimation of LAI from the NDVI
semi-empirical transfer function is achieved at moderate spatial
resolution by using the NDVIν

app directly computed from the
near infrared and red variables acquired at moderate spatial
resolution. Therefore, it amounts to estimating the LAI from the
bivariate transfer function fp,r of the near infrared and red
variables (Eq. (16)). For most of the sites, because of the
compensation effect with the NDVI scaling bias, the scaling
bias caused by the non-linear relationship between NDVI and
LAI is lower than the expected scaling bias due only to the non-
linearity between LAI and NDVI.

5. Correcting the scaling bias

5.1. Univariate transfer function

The accuracy of the scaling bias correction is high onAlpilles01
at 1000 m spatial resolution with a RRMSE1000 of 0.8 (Fig. 7).
However, it varies with the spatial resolution and from site to site
(Fig. 8). For example, on Alpilles01, the correction is less accurate
at 500 m spatial resolution (RRMSE500=0.4) than at 1000 m
(RRMSE1000=0.8), because the local bias of one of the pixels is
largely over estimated (pixel A in Fig. 9a). The over-estimation of
the local spatial heterogeneity, sloc

2 (x|ν), by the dispersion variance
γ(ν,ν) (Fig. 9b) explains the failure of the model on this particular
pixel. In addition, the significant degree of non-linearity associated
with the high NDVI value of this pixel (Fig. 9c) amplifies
multiplicatively the over-estimation of the bias. Conversely, on
pixel C, although its local spatial heterogeneity is poorly quantified
byγ(ν,ν) (Fig. 9b), the bias is not over-estimated (Fig. 9a). The low
degree of non-linearity of the transfer function related to the low
NDVI value of the pixel C (Fig. 9c) prevents a large scaling bias.
However, although the model may fail for a few 500 m moderate
resolution pixels, on average, the accuracy of the correction over
the whole image is very satisfactory.

The model relies on the second order stationarity hypothesis
(Eq. (12)) which ensures that the variogram quantifies on
average the local spatial heterogeneity of the moderate
resolution pixels. The relevance of the second order stationarity
hypothesis is verified if the variation of sloc

2 (x|ν) around γ(ν,ν) is

small. This depends strongly on the spatial resolution ν. For
most sites, γ(ν,ν) represents better the local spatial hetero-
geneity at 1000 m spatial resolution than at other ones. The
correction is thus the most accurate at 1000 m spatial resolution.
Specially, on Fundulea01, the accuracy is very poor at pixel
sizes smaller than 1000 m (Fig. 8), because on this site, the
extent of the high spatial resolution image is not large enough
with respect to the size of the field spatial structures.
Consequently, the variogram does not provide an accurate
quantification of the local spatial variability (Garrigues et al.,
2006). For some sites such as Nezer01 or Puechabon01, the
model is inaccurate for all moderate resolution pixels and for
any of the spatial resolutions (Fig. 8). On these sites, the
variogram does not reach a stationary sill at the image scale
which implies that the second order stationarity hypothesis is
not consistent with the data (Garrigues et al., 2006).

5.2. Bivariate transfer function

As displayed in Fig. 10, the bivariate model reduces the
RMSE (RRMSE1000,biva positive) on half of the sites at 1000 m
spatial resolution (e.g. on Alpilles01 RRMSE1000,biva=0.9). The
model accuracy varies also with the site and the spatial
resolution (on Alpilles01 RRMSE500,biva=0.2). The failure of
the model to estimate the scaling bias for some pixels is
similarly due to a poor representation of the local dispersion
variances and covariance of the red and near infrared variables
by the direct variograms and the cross variogram of these high
spatial resolution radiometric variables.

However, a poor correction of the scaling bias is more
difficult to interpret than for the univariate case, because three
sources of discrepancy between local and theoretical values of
the dispersion variances and covariance may compensate for
one another or add up (Eq. (21)). On Alpilles01, the over-
estimation of the local scaling bias of pixel A (Fig. 11a) is
caused by an over-estimation of the red local dispersion
variance (Fig. 11c). But on pixel C, the over-estimation of the
near infrared local dispersion variance (Fig. 11b) is compen-
sated for by an under-estimation of the local dispersion
covariance between the near infrared and red variables (Fig.
11d), leading to a small difference between the theoretical
scaling bias and its local value (Fig. 11a).

The accuracy of the bivariate model is generally lower than
that of the univariate model. On some sites or at some spatial
resolutions, the model fails to estimate the scaling bias for all the
moderate resolution pixels of the image (negative value of
RRMSEν,biva). As with the univariate model, the bivariate model
relies on the second order stationarity hypothesis. This hypothesis
depends not only on the spatial resolution but also on the nature of
the variable. Since it must be relevant for both near infrared and
red variables, the estimation of the bivariate scaling bias is thus
more constraining than in the univariate case.

6. Conclusion

This study provides a model to correct the scaling bias
generated by non-linear estimation processes of LAI from
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heterogeneous remote sensing data at moderate spatial resolu-
tion. The model is built first for a semi-empirical transfer
function relating LAI to NDVI. The scaling bias is estimated on
each moderate resolution pixel as a function of (i) the degree of
non-linearity of the transfer function quantified by its second
derivative and (ii) the intra-pixel spatial heterogeneity quanti-
fied on average by the variogram of the high spatial resolution
(20 m) NDVI image. Then, the model is extended to a bivariate
transfer function where LAI is related to the red and near
infrared reflectances. The scaling bias depends on (i) the
Hessian matrix of the transfer function and (ii) the variograms
and the cross variogram of the high spatial resolution red and
near infrared reflectances.

The magnitude of the scaling bias is evaluated on several
distinct landscapes from the VALERI database. It increases
rapidly with pixel size until the pixel is larger than the typical
spatial scale of the data. Adjusting for scaling bias is generally
critical on crop sites which are the most heterogeneous sites at
the landscape level (LAI relative bias between 10% and 19% at
1000 m spatial resolution for the transfer function directly
relating NDVI to LAI). Since natural vegetation and forest sites
are more homogeneous than crop sites at the landscape level,
the magnitude of their scaling bias is lower (LAI relative bias
between 0.5% and 3% at 1000 m spatial resolution).

Since the NDVI is a non-linear function of the near infrared
and red reflectances, we show that the scaling bias related to LAI
is different when the transfer function is applied to the NDVI
directly aggregated at moderate resolution than when it is applied
to the NDVI computed from the aggregated near infrared and red
reflectances. The scaling bias caused by the non-linearity of the
NDVI as a function of near infrared and red reflectances adds up
or compensates for the scaling bias between LAI and NDVI. In
practice, LAI is estimated at moderate resolution from the NDVI
computed from the near infrared and red reflectances acquired at
moderate spatial resolution. In this case, for most of the sites, the
scaling bias is lower than the expected scaling bias due only to the
non-linearity between LAI and NDVI. This example illustrates
how the scaling bias propagates through the composition of
several non-linear models. Even a small bias related to the input
variable of a non-linear model may increase dramatically the
scaling bias of the model. Since estimation processes of land
surface variables often result from the composition of several non-
linear models, it is critical to account for this mechanism to
improve the description of land surface processes.

Finally, the accuracy of the scaling bias correction depends
mainly on the ability of the variograms and cross variogram to
represent on average the local dispersion variances and
covariance within a moderate resolution pixel. Results are
generally better at 1000 m spatial resolution than at other ones.
When the extent of the high spatial resolution image is large
enough compared to the size of the image spatial structures, the
information provided by the variogram is sufficient to quantify the
mean spatial heterogeneity of the moderate resolution pixels. It is
the case for most of the heterogeneous cropland sites studied in
this work. On some landscapes for which the model is inaccurate,
a larger image size would be more appropriate to better quantify
the spatial heterogeneity. However, note that most of these sites

are homogeneous at the landscape level and their scaling bias is
thus negligible. Since the correction model is more constraining
for the bivariate transfer function than for the univariate transfer
function, the estimation of the scaling bias over the sites under
study is generally less accurate for the bivariate transfer function.

In this approach, the variogram of high spatial resolution
radiometric data is used as a proxy for the intra-pixel spatial
heterogeneity. Its availability is critical to use this approach
operationally to correct the scaling bias at moderate resolution.
Therefore, way have to be found to get prior knowledge of this
intra-pixel spatial heterogeneity metric without systematic
concurrent high spatial resolution images that would make
moderate resolution images useless. The variogram depends on
two components: the spatial structure and the spatial variability
of the data. These components can be retrieved by using either a
temporal sampling or a spatial sampling per type of landscape of
the high spatial resolution data. Further studies are required to
test the effectiveness of this approach.
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