
ent 103 (2006) 81–96
www.elsevier.com/locate/rse
Remote Sensing of Environm
Quantifying spatial heterogeneity at the landscape scale using
variogram models

S. Garrigues a,⁎, D. Allard b, F. Baret c, M. Weiss d

a University of Maryland, NASA's GSFC, Greenbelt, MD, USA
b Biométrie, INRA, Avignon, France

c Climat Sol Environnement, INRA, Avignon, France
d Noveltis, Toulouse, France

Received 18 July 2005; received in revised form 20 March 2006; accepted 22 March 2006
Abstract

The monitoring of earth surface dynamic processes at a global scale requires high temporal frequency remote sensing observations which are
provided up to now by moderate spatial resolution sensors. However, the spatial heterogeneity within the moderate spatial resolution pixel biases
non-linear estimation processes of land surface variables from remote sensing data. To limit its influence on the description of land surface
processes, corrections based on the quantification of the intra-pixel heterogeneity may be applied to non-linear estimation processes. A
complementary strategy is to define the proper pixel size to capture the spatial variability of the data and minimize the intra-pixel variability.

This work provides a methodology to characterize and quantify the spatial heterogeneity of landscape vegetation cover from the modeling of
the variogram of high spatial resolution NDVI data. NDVI variograms for 18 landscapes extracted from the VALERI database show that the land
use is the main factor of spatial variability as quantified by the variogram sill. Crop sites are more heterogeneous than natural vegetation and forest
sites at the landscape level. The integral range summarizes all structural parameters of the variogram into a single characteristic area. Its square
root quantifies the mean length scale (i.e. spatial scale) of the data, which varies between 216 and 1060 m over the 18 landscapes considered. The
integral range is also used as a yardstick to judge if the size of an image is large enough to measure properly the length scales of the data with the
variogram. We propose that it must be smaller than 5% of the image surface. The theoretical dispersion variance, computed from the variogram
model, quantifies the spatial heterogeneity within a moderate resolution pixel. It increases rapidly with pixel size until this size is larger than the
mean length scale of the data. Finally based on the analysis of 18 landscapes, the sufficient pixel size to capture the major part of the spatial
variability of the vegetation cover at the landscape scale is estimated to be less than 100 m. Since for all the heterogeneous landscapes the loss of
NDVI spatial variability was small at this spatial resolution, the bias generated by the intra-pixel spatial heterogeneity on non-linear estimation
processes will be reduced.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Remote sensing observations are relevant to describe land
surface processes at the global scale, such as primary
production, carbon and water fluxes. However, the monitoring
of vegetation functioning requires high temporal frequency
data which are provided up to now by moderate spatial
resolution sensors with a spatial resolution from few hundred
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meters (MERIS/ENVISAT, MODIS/TERRA) up to one or few
kilometers (VEGETATION/SPOT, SEVIRI/MSG, POLDER/
ADEOS, POLDER/PARASOL). At such moderate resolution,
the surface observed through the instantaneous field of view of
these sensors may be very heterogeneous, because the
landscape is a mosaic of objects, such as agricultural fields or
vegetation patches, that are often smaller than moderate
resolution pixels. Since sensors integrate the radiometric signal
over the pixels, intra-pixel spatial heterogeneity information is
lost at moderate spatial resolution. Intra-pixel spatial hetero-
geneity biases non-linear estimation processes of land surface
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variables from moderate spatial resolution sensors (Friedl,
1997; Garrigues, 2004; Hu & Islam, 1997; Raffy, 1994; Tian et
al., 2002; Weiss et al., 2000). To limit its influence on the
description of land surface processes, a first strategy consists in
explicitly taking into account the intra-pixel spatial heteroge-
neity in non-linear estimation processes (Garrigues et al., in
press). This strategy requires quantifying the intra-pixel spatial
heterogeneity. A complementary strategy is to define the
proper pixel size to capture the spatial variability of the data and
minimize the intra-pixel variability (Atkinson, 1995; Curran &
Atkinson, 2002; Garrigues, 2004; Marceau et al., 1994; Puech,
1994; Rahman et al., 2003). Therefore, characterizing the
landscape spatial heterogeneity may help in designing the
spatial resolution for future earth observing missions. Regard-
ing validation field campaigns, the landscape spatial hetero-
geneity is also an essential information to choose a suitable
sampling scheme which captures the spatial scale of the surface
property and optimizes the field collection resources (Baret et
al., in press; Morisette et al., 2002; Morisette et al., in press;
Stein & Ettema, 2003).

To properly characterize the spatial heterogeneity, it must be
appropriately defined. A surface property is heterogeneous, if
its measurements vary in space (Kolasa & Rollo, 1991). In this
paper, spatial heterogeneity is described through two
components:

• The spatial variability of the surface property over the ob-
served scene.

• The spatial structures, also called objects or patches. They
repeat themselves independently within the observed scene at
a characteristic length scale (i.e. spatial scale) which
represents the spatial structure extent. They can be viewed
as the typical correlation area (i.e. the typical area of
influence) of the surface property. Data are often distributed
into independent sets of spatial structures, related to different
length scales and spatial variability, being overlaid in the
same region. A formal definition of the spatial structures is
given in Section 4.3.

In this work the Normalized Difference Vegetation Index
(NDVI; Jackson, 1983) is the ‘state’ variable used to describe
the spatial heterogeneity of vegetation cover. Although NDVI is
sensitive to soil and atmospheric effects, it is a good indicator of
the vegetation amount (Henebry, 1993). Spatial heterogeneity
of the measured surface property depends on its observational
scale (Bian, 1997; Bierkens et al., 2000; Cao & Lam, 1997;
O'Neill et al., 1991; Quattrochi & Goodchild, 1997; Tian et al.,
2002). The observational scale is defined by both the
geographic extent of the observed scene and the spatial
resolution of the data (Bierkens et al., 2000; Cao & Lam,
1997). The geographic extent determines the biological
organization level on which the surface property is observed
such as the leaves (a few centimeters), the canopy (10 to 100 m),
the landscape (100 m to a few kilometers) or the region (about
100 km). When describing the spatial heterogeneity of moderate
spatial resolution pixels, the geographic extent corresponds to
the landscape level. It is defined in this paper as an area of a few
square kilometers (9 to 50 km2). The spatial resolution of
remote sensing data is equal to the nominal pixel size of the
image as defined by the size of the sampling step of the sensor at
nadir. The sensor system applies a low pass spatial filter to the
radiometric signal, characterized by the Point Spread Function
(PSF). The spatial support of the PSF defines the size of the
actual spatial support of the data which may be larger than the
pixel size. In this paper, the PSF effect is neglected. The actual
spatial support of the data on which the signal is integrated is
thus approximated by the pixel. The combination of the PSF
and the sampling step of the sensor determines the minimum
size of the objects detected by the sensor. The pixel size must be
small enough to characterize the typical length scales of interest.
For example, very high spatial resolution images (e.g. CASI,
2.5 m spatial resolution) are necessary to detect objects within
the canopy level (like tree crowns in a forest). In this work, the
typical length scales of the landscape, such as the extent of an
agricultural field, are much larger than the size of the canopy
objects. Therefore, high spatial resolution data (e.g. SPOT-HRV,
20 m spatial resolution) are fine enough to describe the length
scales of the landscape (De Cola, 1989; Henebry, 1993; Walsh
et al., 1997). Since this study focuses on the description of the
spatial heterogeneity at the landscape level, the length scales
smaller than the size of the high spatial resolution pixel are thus
neglected.

This work aims at using variogram models of high spatial
resolution NDVI images (i) to describe the spatial heterogeneity
of vegetation cover at the landscape level, (ii) to quantify this
spatial heterogeneity at moderate spatial resolution and (iii) to
propose an approach for defining a “sufficient pixel size” to
capture the spatial variability of the landscape vegetation cover.
In Section 2, some image spatial analysis tools are reviewed to
underline the potential of the variogram to model the spatial
heterogeneity characteristics of the landscape. The 18 con-
trasted landscapes extracted from the VALERI database and
used in this study, are described in Section 3. Section 4 is
dedicated to the variogram methodology used to describe and
quantify the spatial heterogeneity. In Section 5, the landscape
spatial heterogeneity is analyzed with respect to the land use and
the vegetation type. Then, the influence of the image size on the
characterization of the spatial heterogeneity by the variogram
and the limit of the variogram to describe the local spatial
heterogeneity are discussed. Finally, the variogram information
is used to estimate a sufficient pixel size to capture the
landscape spatial variability.

2. Brief review of tools used to characterize the image
spatial heterogeneity

Julesz (1962) underlines that first order statistics are not
efficient to depict image spatial variations since they do not
account for spatial correlation between data. Second order
statistics which describe the spatial relationships between data
are more appropriate (Gagalowicz, 1983; Haralick & Shanmu-
gan, 1974; Julesz, 1962). Table 1 shows a comparison of the
main characteristics of some second order statistics tools used to
explore the spatial heterogeneity of an image:



Table 1
Comparison of several tools to explore the image spatial variation (SOA: Second Order Stationary, NA: not applicable)

Tools Approaches Hypothesis Image properties Data regularization References

Local variance Empirical SOA
(implicit)

– Image variance Multiscale formalism Woodcock and Strahler (1987),
Rahman et al. (2003)– Length scales

Quadtree, hierarchical
decomposition

Empirical SOA
(implicit)

– Image variance Multiscale formalism Woodcock and Harward (1992),
Csillag (1997)– Length scales

Haralick indices Empirical SOA
(implicit)

– Image variance NA Haralick and Shanmugan (1974),
Carr (1996)– Length scales

– Correlation

Spatial entropy Probabilistic SOA – Spatial disorder NA Journel and Deutsch (1993)
Variogram Probabilistic SOA or

intrinsic
– Image variance Change of

support theorem
Curran (1988), Jupp et al. (1988a),
Woodcock et al. (1988a),
Lacaze et al. (1994),
Chilès and Delfiner (1999),
Atkinson (2001)

– Length scales
– Image rugosity
(with behavior of the
variogram at the origin)

Fractal Probabilistic Intrinsic – Image rugosity Power law with only
one scale factor

Mandelbrot (1983), De Cola (1989),
Lam and De Cola (1993)

Multifractal Probabilistic Intrinsic – Multifractal spectrum Power law with
infinite scale factors

De Cola (1993), Hu et al. (1998),
Lovejoy et al. (2001)

Fourier transform Mathematical
or probabilistic

SOA
(implicit)

– Image variance NA Mallat (1999),
Cosh and Brutsaert (2003)– Length scale

Wavelet transform Mathematical NA – Local spatial variation Multiscale formalism Hu et al. (1998), Mallat (1999),
Csillag and Kabos (2002)– Local length scale
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• Approaches: Image spatial heterogeneity can be described by
using empirical approaches such as Haralick indices,
ANOVA-quadtree analysis or local variance. Its character-
ization by these tools may be limited because of the lack of an
underlying theoretical framework. Probabilistic approaches
which consider the image as a realization of a stochastic
process called random function (Chilès & Delfiner, 1999),
provide more efficient tools to model the spatial heteroge-
neity components. Other methods involve mathematical
models such as Fourier transforms or wavelet analysis
(Mallat, 1999).

• Underlying hypothesis: The characterization of spatial
heterogeneity components may involve explicit or implicit
hypothesis of stationarity. Stationarity means that the
characteristics of the underlying random function are
invariant to the shifting of a group of pixels from one part
of the image to another (Wackernagel, 2003). Two stationar-
ity hypotheses are commonly used. Second order stationarity
supposes the existence and the stationarity of the first two
moments of the random function. Intrinsic stationarity
assumes second order stationarity of differences between
values at two different locations.

• Image properties: The variance and the length scales are the
main image properties retrieved from second order statistics
tools. The characterization of finite length scale requires a
second order stationarity assumption. It is achieved by the
decomposition of image variance which is either implicit with
the variogram (Chilès & Delfiner, 1999; Lacaze et al., 1994;
Tian et al., 2002) or explicit with a multiscale representation
of the image (Csillag, 1997; Csillag & Kabos, 1996). Note
that wavelet analysis is the only method able to detect and
quantify properly local spatial variations in the image
(Mallat, 1999) since all other methods rely on some
stationarity hypothesis.

• Description of data regularization: This concept refers to
the loss of image spatial variability by aggregating the
image at coarser spatial resolution. The variogram tool is
specially helpful here since it is able to quantify data
regularization through the theory of change of support
(Atkinson, 2001; Collins & Woodcock, 1999; Jupp et al.,
1988a,b).

The choice of a method depends on the nature of the data,
the observational scale and the goals of the study. The NDVI
variogram defined in the framework of second order
stationarity hypothesis is an appropriate tool to model the
characteristics of the spatial heterogeneity of the landscape
vegetation cover (spatial variability and length scales). It
provides a pertinent understanding of the nature and causes
of the image spatial variation (Ramstein & Raffy, 1989;
Woodcock et al., 1988a,b) such as the radiometric contrast
between the image objects (Bruniquel-Pinel & Gastellu-
Etchegorry, 1998; Curran, 1988; St-Onge & Cavayas, 1995;
Woodcock et al., 1988a,b), the mean size of the image
objects (Lacaze et al., 1994; Woodcock et al., 1988a,b) or the
multiscale spatial structuring of the landscape (Lacaze et al.,
1994; Oliver, 2001). However, most of these papers are
limited to experimental variograms. In this paper, we propose
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to retrieve spatial heterogeneity characteristics from vario-
gram models fitted to experimental variograms. We also
introduce the concept of integral range, a characteristic
derived from variogram models that will be shown to be
related to the spatial extent of the image spatial structures.
Application of these tools and concepts to a library of 18
images will prove to be powerful for describing and
understanding the spatial heterogeneity at the landscape
level. Moreover, the modeling of the variogram allows
quantifying explicitly the loss of spatial variability as the
spatial resolution decreases. This result can then be used to
correct the bias induced by spatial heterogeneity when
scaling non-linear model at moderate spatial resolution
(Garrigues et al., in press).

3. Data description

The data used here are part of the VALERI database
(Baret et al., in press), which provides SPOT-HRV scenes at
20 m spatial resolution for several landscapes sampled
through the world. For this study, 18 contrasted spatial
heterogeneity sites were selected (Table 2). Each site has the
following characteristics: 3000 by 3000 m size; flat
topography; it contains one or two types of vegetation. The
reflectance was measured in four spectral bands: GREEN
(0.5–0.59 μm), RED (0.61–0.67 μm), NIR (0.78–0.89 μm)
and SWIR (1.58–1.75 μm). Although a fully multivariate
analysis is possible (Garrigues, 2004), for the clarity of
exposition we limit the analysis of vegetation cover to a
Table 2
Data base (detailed information on each site are available on the VALERI web site

Site name Biome (FAO
classification)

Date

Fundulea01 Cropland May
Alpilles01 Cropland Mar
Barrax03 Cropland Jul
SudOuest02 Cropland Jul
Alpilles02 Cropland Jul
Gilching02 Cropland and

mixed forest
Jul

Laprida01 Grassland Nov
Larzac01 Grassland Jul
Larose03 Mixed forest Aug
Jarvselja01 Mixed forest Jul
Hirsikangas03 Needleleaf forest Aug
Nezer01 Needleleaf forest

(pine forest)
Jun

Concepcion03 Needleleaf forest
(80% of pine)

Jan

Aekloba01 Broadleaf forest
(Palmtree plantation)

Jun

Counami01 Broadleaf forest
(tropical forest)

Oct

Puechabon01 Closed shrubland
(Med. vegetation)

Jun

Gourma00 Savanna Sep
Turco02 Barren and

sparse vegetation
Aug

Date is the acquisition month of the image. mNDVI and σNDVI are the mean and stan
univariate measure represented by NDVI (Eq. (1)) computed
from RED and NIR reflectances.

NDVI ¼ NIR−RED
NIRþ RED

: ð1Þ

The SPOT-HRV images are not contaminated by clouds
except on the tropical forest image for which a cloud mask was
applied. They are not corrected for atmospheric scattering and
absorption. But, for most scenes, the atmospheric effects are
low in the RED and NIR bands (Baret et al., in press).

4. Methodology

The characterization of landscape spatial heterogeneity
from the selected NDVI images requires several hypotheses.
H1: the image extent (3000 m) is large with respect to the
spatial features of interest, and any spatial structures
extending beyond the image extent is considered as apparent
trends. H2: the radiometric measurement errors (cloud
detection, atmospheric effects, resampling effects…) are
small relative to the surface variations. Because the
combination of the PSF and the sampling step of the sensor
are such that effects of spatial variations within a pixel are
very small relative to the environmental variations, we state
the following third hypothesis. H3: spatial variations at a scale
smaller than the sampling step can be neglected. In addition,
we consider high spatial resolution radiometric data as
punctual (H4).
www.avignon.inra.fr/valeri)

Latitude Longitude mNDVI σNDVI

44.41 26.58 0.51 0.23
43.81 4.74 0.41 0.19
39.06 2.10 0.29 0.19
43.51 1.24 0.50 0.17
43.81 4.74 0.38 0.16
48.08 11.33 0.60 0.12

36.99 − 60.55 0.62 0.09
43.95 3.12 0.49 0.06
45.38 −75.22 0.70 0.06
58.29 27.29 0.82 0.05
62.64 27.01 0.59 0.09
44.51 −1.04 0.66 0.06

−37.47 −73.47 0.69 0.09

2.63 99.68 0.65 0.04

05.35 53.25 0.69 0.03

43.72 3.65 0.54 0.10

15.32 −1.55 0.22 0.01
−18.23 −68.18 0.11 0.01

dard deviation of the NDVI image.

http://www.avignon.inra.fr/valeri
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The approach follows two steps. The experimental vario-
gram is first computed at the image scale. A probabilistic
framework is then used to model the spatial heterogeneity
components through the experimental variogram.

4.1. Experimental variogram

NDVI data are considered as values of a punctual
regionalized variable z(x), i.e. a numeric function of geographic
location (Matheron, 1965), which describes the spatial
distribution of the landscape vegetation cover over the image
domain, I. The experimental variogram measures the average of
squared differences between values z(xα) and z(xβ) of paired
pixels (xα, xβ) separated by a vector h (Eq. (2)).

geðhÞ ¼
1

2NðhÞ
X

jjxa−xbjjch

ðzðxaÞ−zðxbÞÞ2: ð2Þ

Experimental variograms can be computed for a specific
direction (h is then a vector in Eq. (2)) or without specifying a
direction (h is reduced to a distance in Eq. (2)). Variogram values
are not statistically reliable at large distances (Chilès & Delfiner,
1999). We therefore decided to compute the variogram up to the
maximum distance dmax=1500 m equal to half the extent of the
images, as advised by these authors. An experimental variogram
is characterized by several key properties (Chilès & Delfiner,
1999). It is usually an increasing function of the distance ||h||
(Fig. 1) since values of pixels close together are likely to be more
similar than values of far apart pixels. At large distance, it may
reach a sill or increase indefinitely. Most of the variograms
computed on the images of the VALERI database reach a sill
before dmax. The sill is an indicator of the spatial variability of the
data. The range is the distance at which the variogram reaches
the sill. If the sill is not reached before dmax, the spatial variability
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Fig. 1. NDVI variograms of four contrasted landscapes. The dash lines are the
experimental variograms. The solid lines represent the fitted variogram models.
The parameters of the variogram models are given in Table 4.
is not completely encompassed at the image scale. The behavior
of the variogram near the origin is an important property of the
variogram which reflects the continuity of the variable under
study. In particular, a discontinuity of the variogram at the origin,
also called nugget effect, can be related to either uncorrelated
noise (measurement error) or to spatial structures at a length
scale smaller than the pixel size. All experimental variograms
computed on the VALERI images are linear at the origin, without
any nugget effect. This observation is a strong support to the
hypotheses (H2) and (H3). In this work, the spatial distribution of
NDVI is assumed to be isotropic and the experimental
variograms are computed by pooling together all directions.
This assumption is not absolutely necessary. However, since
isotropy is verified for most of the 18 images analyzed in this
paper, we introduce it for the clarity of exposition. The
methodology presented below can easily be extended to the
case of non-isotropic variogram models.

4.2. Variogram modeling

The experimental variogram provides an empirical de-
scription of the NDVI spatial distribution using second order
statistics. A probabilistic model for the regionalized variable
z(x) is used to provide a parametric characterization of spatial
heterogeneity components. z(x) is regarded as one among all
possible realizations of the random function Z(x) (Chilès &
Delfiner, 1999; Wackernagel, 2003). Second order stationar-
ity of Z(x) assumes the existence and the stationarity of its
first and second moments,

E½ZðxÞ� ¼ m CovðZðxÞ; Zðxþ hÞÞ ¼ CðhÞ; ð3Þ
for all x and h. The function C(h) is the covariance function of
Z(x); it characterizes the spatial distribution of Z(x). Under
second order stationarity assumption, the theoretical variogram,

gðhÞ ¼ 0:5Var½Zðxþ hÞ−ZðxÞ�; ð4Þ
is related to the covariance function according to the
relationship,

gðhÞ ¼ r2−CðhÞ; ð5Þ

where σ2 is the variance of Z(x). The theoretical variogram is a
function starting from 0 for ||h|| =0 and ultimately converging to
the sill σ2 as ||h|| tends to infinity. The range of the theoretical
variogram is the distance at which it reaches a sill. Data
separated by a distance larger than the range are uncorrelated.

The theoretical variogram is estimated by fitting a valid
mathematical function to the experimental variogram (Chilès &
Delfiner, 1999). These functions, also called authorized models,
must be conditionally negative functions (Wackernagel, 2003).
Exponential and spherical models are used in this work since
they suit the main properties of the experimental variograms:
linear behavior and continuity at the origin; convergence to a
sill. Fig. 2a and Table 3 illustrate these two elementary models
and their main characteristics. Note that the range parameter of
the exponential model is the so called practical range, i.e. the
distance at which the variogram reaches 95% of the sill.
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Fig. 2. Theoretical models of the variogram a/: exponential and spherical elementary models with a range r equal to 200 m. b/: linear model of regionalization: sum of
an exponential (r1=200 m, b1=50%) and a spherical model (r2=600 m, b2=50%).
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To account for the multiple length scales of the data, a linear
combination of the above functions is used to model the
variogram. This extended model of variogram (Eq. (6)), called
linear model of regionalization (Wackernagel, 2003), is a
weighted sum of l elementary variogram models, gk(rk,h),
k=1,…, l:

gðhÞ ¼ r2
Xk¼l

k¼1

bkgkðrk ; hÞ: ð6Þ

This model is particularly appropriate to describe indepen-
dent sets of spatial structures, related to different length scales
and spatial variability, being overlaid in the same region. It
describes both components of spatial heterogeneity as defined
in the Introduction (Fig. 2b):

- the degree of image spatial variability is given by the sill σ2

- the image spatial structures are characterized by the parameters
corresponding to each elementary model gk: range rk and
fraction of the total variance bk related to each range rk.
Table 3
Characteristics of the spherical and exponential variogram models

Model Formula (γ(h)) Integral
range (A)

Spherical

gðhÞ ¼ r2
3
2
h
r
−
1
2

h
r

� �3
 !

if hVr

r2 if h>r

8>><
>>:

kr2

5

Exponential
gðhÞ ¼ r2 1−exp −

3h
r

� �� �
2kr2

9

The parameters of γ(h) are estimated by a semi-automatic
fitting method (Isatis software, http://www.geovariances.com).
The number of necessary elementary variograms, l, and the
associated ranges are visually adjusted. Here, it is always found
sufficient to have l equal to one or two. Then, the sill and the
variance weights are estimated by weighted mean square
optimization, as described by Cressie (1985). Since experimental
variograms are not trustworthy for distances larger than dmax, any
estimated variogram range above this distance is deemed not
reliable and therefore was not considered. In this case, the
underlying second order stationarity hypothesis must be rejected.

4.3. Characterization of the image spatial structures

The structural information of the variogram provided by the
ranges rk and the fraction of total variance bk is summarized in a
single parameter: the integral range (A). The integral range of a
second order stationary random function Z(x) is defined by Eq.
(7) (Chilès & Delfiner, 1999; Lantuéjoul, 2002) :

A ¼ 1
r2

Z
haR2

ðr2−gðhÞÞdh: ð7Þ

Table 3 gives the value of A for the spherical and exponential
models (Lantuéjoul, 2002). For a linear model of regionaliza-
tion, A is a weighted linear combination of the integral range of
each elementary model, Ak:

A ¼ R
l

k¼1
bkAk ; Ak ¼

Z
haR2

ð1−gkðrk ; hÞÞdh ð8Þ

The integral range is an area moment (Serra, 1982). The
ergodic covariance theorem (Chilès & Delfiner, 1999; Lantué-
joul, 2002) states that if the image domain, I, is large with

http://www.geovariances.com
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respect to the integral range, the variance of the spatial average
of Z(x) over I, denoted Z̄ I, is

VarðZ̄I Þc r2A
jI j ð9Þ

Hence, if compared with the conventional formula for the
variance of an arithmetic average of M independent points, the
ratio M= |I|/A can be seen as the equivalent number of
independent values in I. The integral range A can be
considered as their equivalent area of influence. Its square
root, denoted Dc, is thus the distance between those M
‘independent data’, as if they were located on a regular square
grid. Dc summarizes all structural parameters of the fitted
model into a single characteristic distance which is the
weighted average of the different range parameters. We chose
to call it the ‘mean length scale’ of the NDVI image under
study. It is related to the mean extent of the image spatial
structures. A and Dc may be used as yardsticks to judge if the
size of an image is large enough to detect the length scales of
the landscape in this image (hypothesis H1). We state that
hypothesis (H1) is verified if the variance of Z̄ I is negligible,
i.e. if the integral range A is smaller than 5% of the image
surface |I|. Therefore, for a 3 by 3 km image, if A is smaller
than the threshold AT,3 km=4.5.10

5 m2, i.e. if Dc is smaller
than Dc,T,3 km=671 m, the image size is considered to be large
enough to characterize the image spatial structures by the
variogram. Among the 18 images under study, 12 verify the
hypothesis H1.

4.4. Quantification of the spatial heterogeneity

In the previous sections, the variogram was used to describe
the spatial distribution of the NDVI at the image scale. It can be
also used to quantify the spatial heterogeneity of a sub-domain
of the image. In the following, the high spatial resolution image
is partitioned into P congruent blocks vi by shifting a generic
block domain (v). The image spatial variability is decomposed
at 3 spatial scales (Atkinson, 2001; Chilès & Delfiner, 1999;
Myers, 1997)

- The experimental dispersion variance of the N high spatial
resolution pixel values within the image (i.e. image
variance),

s2ðxjIÞ ¼ 1
N

XN
a¼1

ðzðxaÞ− z̄I Þ2; ð10Þ

where z̄ I is the spatial average of z(x) over the image.

- The experimental dispersion variance of the P block values
within the image (i.e. between block variability),

s2ðvjIÞ ¼ 1
P

XP
i¼1

z̄vi− z̄Ið Þ2; ð11Þ

where z̄ vi is the spatial average of z(x) over the domain vi.
- The average experimental dispersion variance of the n high
resolution pixel values within the blocks (i.e. intra-block
variability),

s2ðxjvÞ ¼ 1
P

XP
i¼1

1
n

Xn
a¼1

zðxaÞ− z̄við Þ2: ð12Þ

The decomposition of the image spatial variability is
summarized by Eq. (13):

s2ðxjIÞ ¼ s2ðvjIÞ þ s2ðxjvÞ: ð13Þ

As shown in Fig. 3, as the size of the block v increases,
the intra-block variability increases and the between block
variability decreases. s2(x|v) quantifies empirically the loss of
image variability when aggregating the pixels to a coarser
resolution. It can be computed directly from the theoretical
variogram of the high resolution image. In the framework of
stationary of order 2 random functions, s2(x|v) is a
realization of a random variable S2(x|v). The theoretical
dispersion variance σ2(x|v) of Z(x) within the domain v is
defined as the mathematical expectation of S2(x|v) (Wack-
ernagel, 2003):

r2ðxjvÞ ¼ E⌊S2ðxjvÞ⌋ ð14Þ
It can be shown that the theoretical dispersion variance is

equal to the double integration of the theoretical variogram over
the domain v (Eq. (15), Chilès & Delfiner, 1999),

r2ðxjvÞ ¼ gðv; vÞ ¼ 1

jvj2
Z
xav

Z
yav

gjjx−yjjdxdy; ð15Þ

where ||x−y|| represents the distance between the points x and y
of the domain v and |v| the area of v.

γ(v,v) quantifies the degree of spatial heterogeneity within a
generic sub-domain v of the image. It is computed for several
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size of v (60, 100, 200, 300, 500 and 1000 m). As v increases,
γ(v,v) tends asymptotically towards the sill σ2. When the sill is
reached, data are completely regularized, i.e. the aggregation of
the pixels to a coarser resolution does not engender more loss of
image variability. We define THv, the rate of data regularization,
i.e. the rate of the loss of image spatial variability, at a given
spatial resolution v.

THv ¼ 100gðv; vÞ
r2

: ð16Þ
Its values at several spatial resolutions characterize how fast

γ(v,v) converges to the sill.

5. Results

5.1. Variogram analysis of four contrasted landscapes

To show the ability of the variogram to depict landscape
spatial heterogeneity, the variograms are first analyzed on four
contrasted landscapes (Figs. 1 and 4): cropland (Alpilles01),
closed shrubland (Puechabon01), pine forest (Nezer01) and
tropical forest (Counami01).

The image spatial variability, σ2, increases considerably
from tropical forest (Counami01) to cropland (Alpilles01).
Nezer01 and Counami01 have a low sill because the important
development of vegetation and the presence of green
understory limit the variability of the landscape vegetation
Alpilles01 (mNDVI =0.41,   NDVI =0.19)σ Pu

Nezer01 (mNDVI =0.66,   NDVI =0.06)σ Co

Fig. 4. NDVI images of four contrasted landscapes: Alpilles01: cropland; Puecha
Counami01: tropical forest. The blue pixels on the Counami01 image represen
variogram.
cover. However, because NDVI saturates for dense vegetation,
its spatial distribution may not resolve the whole vegetation
cover variability of these sites. The high variability of
Alpilles01 is explained by the mosaic of vegetation field
(winter wheat at the maximum of greenness) with high NDVI
values and bare soil field (not developed summer crops) with
low NDVI values. The intermediate sill value of Puechabon01
is due to the intrinsic variability of Mediterranean vegetation
structure (presence of open areas, variation of the vegetation
height and density …), as well as some objects (road, quarry,
rocky area…) with low NDVI values contrasting with the
vegetation area.

The shape of the variograms provides an understanding of the
NDVI spatial structureswithin the image domain. The variograms
of Fig. 1 have been modeled using the linear model of
regionalization with two spatial structures. On Counami01 the
variogram increases promptly and reaches almost the whole
image variance at a very short range (r1=57 m; b1=85%). This
landscape is thus poorly structured at the observational scale
under study. Concerning the three other sites, their variograms
show larger spatial structures (r1 between 200 and 300 m). On
Alpilles01, the first spatial structure (r1=268 m) is related to the
mosaic of the agricultural fields, with a value similar to the
average extent (250–350m) of the fields. The associated variance
(b1=60.5%) characterizes the important variability of vegetation
cover between fields which is the main cause of the spatial
variability of this landscape. On Puechabon01, the first spatial
echabon01 (mNDVI =0.54,   NDVI =0.1)σ

unami01 (mNDVI =0.69,   NDVI =0.03)σ

bon01: closed shrubland — Mediterranean vegetation; Nezer01: pine forest;
t cloud pixels. These are not taken into account in the calculation of the
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structure (r1=230m) has a fuzzier shape than that of Alpilles01. It
results both from the intrinsic length scale of Mediterranean
vegetation and the presence of incongruent objects in the
landscape (quarry, roads…). The Nezer01 image has a rectangular
field patterns but its first range (r1=205m) is shorter than the field
extent (around 500 m). The field structure is not detected by the
variogrambecause of the limitedNDVI variability between fields.
The first spatial structure describes the intra-field spatial
variability of the understory cover or some spatial variations of
the plantation density. The second spatial structure of Alpilles01,
Table 4
Parameters of the fitted variogram models

Site name σ2 g1(r1); b1 g2(r2); b2

Fundulea01 0.0516 Sph (781) /
Alpilles01 0.0429 Sph (268); 60.5 Sph (1290); 39.5
Barrax03 0.0398 Sph (648) /
SudOuest02 0.0319 Sph (356); 50.1 Sph (844); 49.9
Alpilles02 0.0256 Sph (184); 26.3 Sph (410); 73.7
Gilching02 0.0151 Exp (525); 91.6 Sph (1125); 8.4
Laprida01 0.0099 Exp (216); 53.8 Sph (1014); 46.2
Larzac01 0.0033 Exp (289); 83.4 Sph (1410); 16.6
Larose03 0.0035 Exp (200); 88.3 Sph (650); 11.7
Jarvselja01 0.0022 Exp (234); 81.3 Sph (1515); 18.7
Hirsikangas03 0.0104 Exp (200); 56.0 Sph (2000); 44.0
Nezer01 0.0038 Exp (205); 66.9 Sph (2000); 33.1
Concepcion03 0.0090 Exp (150); 19.4 Exp (1350); 80.6
Aekloba01 0.0015 Exp (150); 85.2 Sph (1800); 14.8
Counami01 0.0009 Exp (57); 85.0 Sph( 687); 15.0
Puechabon01 0.0108 Exp (230); 64.4 Sph (1750); 35.6
Gourma00 0.0002 Exp (67); 55.4 Sph (2000); 44.6
Turco02 0.0001 Exp (300); 57.3 Sph (2000); 42.7

σ2 is the sill (image spatial variability); g1 and g2 are the elementary variogram model
meter; b1 and b2: fraction of total variance, in %; Dc: square root of the integral range
resolution v.
Nezer01 and Puechabon01 explains a low part of the landscape
spatial variability (less than 40%). On Alpilles01, it may be
caused by the soil variability. The variograms of Puechabon01
and Nezer01 do not reach a sill at a distance lower than 1500 m.
As a consequence, the characterization of their second range is
very uncertain since the whole spatial variability is not
encompassed at the image scale. As shown on these four
landscapes, the NDVI variogram describes efficiently the spatial
heterogeneity of vegetation cover. The analysis is now extended
to the 14 other landscapes of the database.
Dc TH100 TH300 TH500 TH1000

619 10 29 47 76
664 19 50 64 80
514 12 35 55 82
513 15 43 62 83
289 24 61 79 93
493 23 52 68 86
562 29 54 66 83
506 33 64 77 88
236 46 78 88 96
550 38 68 78 88
1058 30 44 60 71
922 34 59 68 78
1014 20 40 52 71
561 51 78 84 90
215 74 88 92 97
841 31 56 66 78
1059 47 59 64 72
1053 23 46 57 70

s; Exp: exponential model; Sph: spherical model; r1 and r2: variogram ranges, in
, in meter; THv : rate of the loss of NDVI spatial variability (in %) at the spatial
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5.2. Description of the spatial heterogeneity at the landscape
level

In order to understand the main factors influencing spatial
heterogeneity at the landscape level, we now compare the
spatial heterogeneity characteristics σ2 and Dc of the 18
landscapes (Fig. 5, Table 4).

5.2.1. Spatial variability
The differences of NDVI spatial variability between land-

scapes (σ2 is between 0.0001 and 0.052) are mainly explained by
the type of landscape. Crop sites are the most heterogeneous
(σ2>0.02). Their spatial variability is explained by the differences
of NDVI values between fields caused by the nature and state of
the crop. The mosaic of bare soil fields with low NDVI and crop
fields with high NDVI, as is the case when the site contains both
winter and summer crops, increases dramatically the NDVI
spatial variability. Natural vegetation and forest sites are more
homogeneous than crop sites at the landscape level (for most of
these sites σ2<0.008). The important vegetation cover of the
forests (NDVI around 0.7) which includes the green understory,
the high density of trees, or the presence of broadleaves,
homogenizes the distribution of NDVI values. Medium vegeta-
tion cover sites with NDVI around 0.49 (grassland) and low
vegetation cover sites with NDVI around 0.17 (savanna and
shrubland) are homogeneous at the landscape level. However, the
type of landscape is not always sufficient to explain the landscape
spatial variability. Indeed, on some sites, the atypical sill
(0.008<σ2 <0.02) with regard to their vegetation type is
explained by additional factors. First, the heterogeneity of land
use within the observed area may increase or decrease the spatial
variability. For example, on Concepcion03 and Hirsikangas03,
the contrast between low NDVI areas (young seedling plantation,
bare soil and water area) and high NDVI values of the forest,
increases the spatial variability of these landscapes. Conversely,
onGilching02 the presence of a homogeneous forest area explains
that the sill value is lower than the other crop sites. Second, other
environmental factors such as the presence of water (Laprida01,
Larose03) or the variation of soil properties (soil salinity on
Laprida01) may also be sources of NDVI spatial variability.

5.2.2. Mean length scale
The mean extent of the image spatial structures, quantified by

the mean length scale Dc, does not show a strong dependency
with respect to the type of landscape. On the 18 sites under study,
it varies from 215 to 1059 m. For the clarity of exposition, the
spatial structures are analyzed per type of landscape, as follows.

On crop sites, Dc varies from 289 to 664 m. Their length
scales are completely characterized at the image scale (Dc<Dc,

T,3 km). NDVI discontinuities between fields create a mosaic
spatial structure resulting mainly from anthropogenic process-
es (field size, seedling and harvesting date, crop rotation…).
The extent of the cropland spatial structures is mainly
influenced by the size of the fields. It varies from large fields
(Fundulea01, Dc=619 m; Barrax02, Dc=514 m) to small
fields (Alpilles02, Dc=289 m). However, the characterization
of the field sizes by the variogram ranges is a non-trivial issue.
Indeed, it may be disturbed by the gathering of fields with
similar NDVI values which create larger spatial structures (e.g.
the second range of SudOuest02). Consequently, NDVI spatial
structures are not only intrinsic properties of the landscape but
depend also on the season. For example, on the Barrax03
NDVI image acquired in July, irrigation discs of vegetation are
laid over a large bare soil background. Since NDVI describes
the vegetation cover, its variogram detects only the disc spatial
structures and not the spatial structures within the bare soil
area. The result would be different with other acquisition
dates. Besides, a radiometric variable more sensitive to soil
properties than NDVI (like RED reflectance) may capture
better the spatial structures within the bare soil area.

On natural vegetation and forest sites, Dc varies from 215 to
1059 m. Their spatial structures have a fuzzier pattern associated
with smoother NDVI discontinuities than crop field structures.
They are caused by several factors such as ecological processes
(light availability, species competition), environmental process-
es (presence of water, soil salinity), geomorphologic factors
(micro-relief, rocky area), seasons (variation of the understory
cover) and human factors (forest exploitation, grazing intensity
on grassland).

Gilching02 is composed of a forest area and a crop area. Its
variogram is particularly interesting since it provides a
characterization of both forest and crop spatial structures. The
first range (r1=525 m) which explains 92% of the image
variance may be explained by the field structure of the crop
area. The larger range (r2=1150 m) is probably related to the
fuzzier spatial structure within the forest area which is less
variable at the image scale. This example underlines that the
field spatial structure of cropland is the main source of NDVI
variability at the landscape level.

In opposition to crop sites, the length scales of natural and
forest sites are not always completely characterized at the image
scale. Indeed, NDVI images with Dc>Dc,T,3 km are not large
enough to encompass the whole landscape variability. It is caused
by the presence of a large spatial structure with respect to the size
of the image, related to an important part of the image variability.
For some of these sites the second range is higher than dmax. As
mentioned before, the underlying second order stationarity
hypothesis is rejected for these sites. On Puechabon01, the
presence of a contrasted spatial structure in the border of the
imagemay be the cause of lack of stationary sill at the image scale.

This analysis provides some understanding of the spatial
heterogeneity factors at the landscape level. The variogram sill
(σ2) is an indicator of the landscape variability. The main factor
of spatial heterogeneity at the landscape level is the variability
of the land use which is mostly influenced by anthropogenic
processes. Croplands are the most heterogeneous sites. Their
field spatial structure is an important source of landscape spatial
variability. Natural vegetation and forest sites are more
homogeneous at the landscape level. Typical length scales of
the landscapes studied in this work, as measured by Dc, vary
from 215 to 1059 m. This information will be used in the
Discussion section to define a sufficient spatial resolution at
which the major part of the landscape spatial variability is
captured by the sensor.
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5.3. Spatial heterogeneity as a function of spatial resolution

Fig. 6 shows the variograms of several NDVI images of the
same site (Puechabon01) originating from Ikonos (4 m) and
SPOT-HRV (20m) sensorswith close acquisition dates or from the
aggregation of SPOT-HRV 20 m NDVI image at coarser spatial
resolution (60, 300, 500, 1000m). The variogram changeswith the
spatial resolution describe the effect of data regularization on the
spatial heterogeneity components. The fall of the sill characterizes
the loss of spatial variability when the spatial resolution decreases.
NDVI variability discrepancy between Ikonos and SPOT-HRV
underlines the different landscape features detected by these two
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forest sites.
sensors. There are more pure vegetation or rocky pixels on the
Ikonos image, thus increasing the NDVI variability. Other factors
such as the PSF of each instrument or the differences in the
atmospheric conditions between the acquisition dates may explain
the difference of the sill value between the two images.

Moreover, the variograms get more regular as the spatial
resolution decreases. At 4, 20 and 60 m resolutions variograms
have similar shape and detect the same length scales. But, for
spatial resolution coarser than 300 m, the first length scale at
230 m is not detected by the variogram. As a consequence, a
spatial structure cannot be resolved by the sensor when the pixel
size is larger than its length scale.
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An important issue emerging from this work is how to quantify
the loss of spatial heterogeneity at coarser resolution. As
mentioned in Section 4.4, the dispersion varianceγ(v,v) represents
the spatial heterogeneity degreewithin the coarse resolution pixel.
As shown on Fig. 7, the rate at which the dispersion variance
increases with the pixel size is explained by the heterogeneity
characteristics of the landscape displayed in Fig. 5. For example,
on the weakly structured site Counami01 (Dc=215 m), NDVI
data are almost completely regularized at 300 m spatial resolution
(Table 4: TH300=88%, TH1000=97%). But on Alpilles01 the
regularization is less important (Table 4: TH300 = 49%,
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At this spatial resolution, since the Fundulea01 length scale
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resolution (TH500=64%), the dispersion variance of the 500 m
coarse pixel is high. At 1000 m spatial resolution, Fundulea01
length scale is not detected any more by the sensor. Hence,
since its image variability σ2 is higher than Alpilles01,
Fundulea01 γ(v,v) is higher.

The variogram is an efficient tool to quantify the regularization
of the data at moderate spatial resolution. The intra-pixel spatial
heterogeneity, quantified by the dispersion variance γ(v,v),
increases rapidly with pixel size until this size is larger than the
mean length scale of the data. It then tends asymptotically to the
sill of the variogram σ2. Generally speaking, at 1000 m spatial
resolution, the difference of dispersion variance between the sites
under study is fully explained by the image variability σ2.

6. Discussion

The characterization of spatial heterogeneity addresses
several issues which are discussed here.

6.1. Effect of image extent on the characterization of spatial
heterogeneity

We proposed a criterion to assess if a 3000 m image is large
enough to characterize and quantify its spatial heterogeneity: the
mean length scale, Dc, must be smaller than the threshold Dc,

T,3 km=671 m. The presence of a stationary sill on the
experimental variogram is a necessary condition, but it is not a
sufficient condition. The previous analysis shows that on some
landscapes, because of the presence of a large spatial structure
with respect to the size of the image, the NDVI spatial variability
is not completely encompassed at the image scale.

Fig. 8 illustrates the effect of increasing the image size on the
experimental variogram. On Alpilles02, for which Dc=289 m is
smaller thanDc,T,3 km, the variogram shape does not change when
the size of the image increases.OnPuechabon01, the experimental
variogram of the 3000×3000 m image does not reach its sill
before dmax=1500m: r2=1750m andDc=841 m, which is larger
thanDc,T,3 km. But the experimental variogram computed over the
7000×7000 m image centered on the same location reaches a
sill. On this site and on some others, increasing the image size
leads to a better characterization of the landscape length scales.
However, this may not be true for all sites, because new spatial
structures may appear on a larger scene. If their extent is too
large with respect to the new image size, they cannot be
completely described by the variogram.

The characterization of the spatial heterogeneity is therefore
strongly dependent on the observational scale. The Dc criterion
can be used to check a posteriori if the image size is large enough
to quantify properly the landscape length scales by the variogram.
Note that it is the case for most of the sites studied in this work,
and especially for all the heterogeneous cropland sites.

6.2. Characterization of the local spatial heterogeneity by the
variogram

The spatial variability (σ2) and the mean length scale (Dc)
represent spatial averages of the spatial heterogeneity charac-
teristics at the image scale. To test if they are representative at the
local scale, they are modeled on the nine 1000×1000 m sub-
domains of the partitioned image. The local spatial heterogeneity
characteristics are investigated on Alpilles02 (small fields) and
Fundulea01 (large fields). Fig. 9 displays for each sub-domain vi,
i=1,…,9, the value of the local mean length scale Dc,vi relative
to the image mean length scale Dc,

Dc;vi;rel ¼ 100
Dc;vi−Dc

Dc
; ð17Þ

and the value of the local sill σνi
2 relative to the image sill σ2,

r2vi;rel ¼ 100
r2vi−r

2

r2
: ð18Þ

On Fundulea01 the extent of the field spatial structure and the
size of the 1000 m sub-domains are close. As a consequence,
there is an important variability of the characteristics computed
on the nine sub-domains and a large difference between their
average and the characteristics computed at the full image scale
(Fig. 9). On the contrary, on Alpilles02, the image variogram
characterizes well the local characteristics of the spatial
heterogeneity. The first range (184 m) describes the small fields
such as those of the sub-domain v7 (Dc,v7=170m) and the second
range (410 m) accounts for larger fields such as those of the sub-
domain v9 (Dc,v9 =370 m). Besides, the average of the spatial
heterogeneity characteristics of the sub-domains are close to
those computed at the image scale (Fig. 9).

Since the variogram provides the mean characteristics of
spatial heterogeneity at the image scale, this information is
sufficient to quantify globally the mean spatial heterogeneity of
an image sub-domain. But the description of the local spatial
variability may be limited. Other methods like wavelet analysis
should be used to detect and quantify local variability and local
length scales within the image.

6.3. Sufficient pixel size to capture the landscape length scales

The typical length scales of the landscapes, quantified in this
work by the parameterDc, may be used to compute on each scene
the largest pixel size at which the major part of the spatial
variability of the landscape is resolved. Shannon's theorem states
that the proper sampling frequency of a signalmust be higher than
twice the maximal frequency of this signal (Shannon, 1948). We
have seen that Dc is the distance separating the “equivalent
independent data” if one assumes that they are arranged on a
regular grid. Using Shannon's theorem, the spatial sampling
frequency must then be larger than 2 /Dc. Hence, the pixel size
must be smaller than Dc /2 to retain the major part of the NDVI
spatial variability. Using this criterion on the landscapes under
study, the range of the Dc /2 values is between 108 and 530 m,
with an average of 324 m. Our results are limited by the number
and the nature of the landscapes studied, but the minimum of the
Dc /2 values computed on the 18 images of the VALERI database
(108 m) is an indication of the upper limit of the sufficient pixel
size to capture the major part of the spatial variability of the
vegetation cover at the landscape level.
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To limit the influence of spatial heterogeneity on non-linear
estimation processes of land surface variables from remote
sensing data, the proper pixel size must be small enough to
capture the spatial variability of the data andminimize the spatial
variability within the pixel. The parameter THvmeasures the loss
of NDVI spatial variability at a given spatial resolution v with
respect to its variability at 20m spatial resolution. Formost of the
sites studied in this work, and especially for all the heteroge-
neous cropland sites, the loss of NDVI spatial variability at
100 m spatial resolution TH100 is less than 30% (Table 4). In
addition, the sites for which TH100 is important are homoge-
neous sites at the landscape level and thus their intra-pixel
heterogeneity γ(v,v) is low at 100 m spatial resolution.
Therefore, regarding the sites under study, the 100 m pixel size
will reduce the bias generated by the intra-pixel spatial
heterogeneity on non-linear estimation processes.

7. Conclusion

This work showed that modeling the variogram of high spatial
resolution NDVI data is a powerful method to characterize and
quantify the spatial heterogeneity of vegetation cover at the
landscape level. The variogram sill σ2 measures the landscape
spatial variability. The image spatial structures are characterized
by both the variogram ranges and the fractions of the total
variance associated with each range. In addition, we introduced
the concept of integral range which summarizes all structural
parameters of the variogram model into a single characteristic
area. Its square root is a weighted average of the several range
parameters and quantifies the mean length scale of the data, i.e.
the mean extent of the image spatial structures. The integral range
is used as a yardstick to judge if the size of an image is large
enough to measure properly the length scales of the data by the
variogram. We propose that it must be smaller than 5% of the
image surface. The square root of the integral range must thus be
smaller than 671 m for a 3000 by 3000 m image.

The modeling of NDVI variogram for 18 contrasted land-
scapes highlights the influence of the land use on the spatial
heterogeneity of vegetation cover at the landscape level. Themost
heterogeneous sites (σ2 between 0.02 and 0.05) are cropland for
which the field spatial structure explains the most important part
(from 60% to 100%) of the NDVI spatial variability. Natural
vegetation and forest sites are more homogeneous at the
landscape level (σ2 between 0.0001 and 0.02). However, their
variability may be increased by the presence of singular objects
with respect to the type of vegetation. Themean length scale of the
landscapes varies between 216 and 1060m. It results from several
processes such as human activity, ecosystem functioning, or
climate. Note that on some landscapes, the size of the image was
too small to properly quantify its length scales. A 7000 by 7000m
extent would have been more appropriate for these cases.

Variogram modeling is an efficient approach to characterize
the loss of spatial variability captured by the sensor as its spatial
resolution decreases. A spatial structure cannot be resolved by the
sensor when the pixel size is larger than its length scale. The
theoretical dispersion variance, computed from the variogram
model, quantifies the intra-pixel spatial heterogeneity. It increases
rapidly with pixel size until this size is larger than the mean length
scale of the data. It then tends asymptotically to the sill of the
variogram σ2. The dispersion variance at the sensor spatial
resolution may be used as additional knowledge to correct non-
linear estimation processes of land surface variables from remote
sensing data. However, ways have to be found to get prior
knowledge of this intra-pixel spatial heterogeneity metric without
systematic concurrent high spatial resolution images that would
make moderate spatial resolution images useless. A possible
approach is to retrieve the intra-pixel spatial heterogeneity by
using a temporal sampling or a spatial sampling per type of
landscape of high spatial resolution data. To test this strategy,
variogram modeling should be applied to a broader spatial and
temporal database of high spatial resolution remote sensing data.

Finally, an upper limit of the sufficient pixel size to capture
the major part of the spatial variability of the landscape
vegetation cover is proposed from the mean length scale
information provided by the variogram. From the analysis of 18
landscapes of the VALERI database, it is estimated to about
100 m. Since for all the heterogeneous landscapes the loss of
NDVI spatial variability was small at this spatial resolution, the
bias generated by the intra-pixel spatial heterogeneity on non-
linear estimation processes will be reduced. However, this result
is limited by the number and the nature of the landscapes
analyzed. A more representative sampling of landscape types is
required to refine the assessment of the sufficient pixel size.
Since the variogram provides the mean characteristics of image
spatial heterogeneity, its quantification of length scales can be
coarse in some cases. Other tools, such as wavelet analysis,
should be used to quantify finer local length scales in the image.

The definition of the optimal pixel size is not a trivial issue. It
depends mainly on the objectives pursued, the objects observed
and the retrieval techniques used. First, the pixel size must be
large enough to be consistent with the object targeted and the
retrieval technique considered. If the spatial resolution is too
fine, spatial structures at small length scales may hamper the
retrieval of the surface property. Further studies are required
to estimate the lower limit of the proper pixel size to
characterize the vegetation cover at the landscape level.
Second, the pixel size must be small enough to capture the
spatial variability of the data and minimize the intra-pixel
spatial variability. The sufficient pixel size proposed in this
study provides an indication of the upper limit of the proper
pixel size to characterize the vegetation cover at the landscape
level. The optimal pixel size should be chosen in between
these two limits but additional factors, including technical and
economic constraints, should be considered to define it for
incoming earth observing missions.
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