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Using First- and Second-Order Variograms for
Characterizing Landscape Spatial Structures
From Remote Sensing Imagery

Sébastien Garrigues, Denis Allard, and Frédéric Baret

Abstract—The spatial structures displayed by remote sensing
imagery are essential information characterizing the nature and
the scale of spatial variation of Earth surface processes. This paper
provides a new approach to characterize the spatial structures
within remote sensing imagery using stochastic models and geo-
statistic metrics. Up to now, the second-order variogram has been
widely used to describe the spatial variations within an image. In
this paper, we demonstrate its limitation to discriminate distinct
image spatial structures. We introduce a different geostatistic
metric, the first-order variogram, which used in combination with
the second-order variogram, will prove its efficiency to describe
the image spatial structures. We then develop a method based
on the simultaneous use of both first- and second-order variogram
metrics to model the image spatial structures as the weighted
linear combination of two stochastic models: a Poisson line mosaic
model and a multi-Gaussian model. The image spatial structures
are characterized by the variance weight and the variogram
range related to each model. This method is applied to several
SPOT-HRV Normalized Difference Vegetation Index (NDVI) im-
ages from the VALERI database in order to characterize the na-
ture of the processes structuring different types of landscape. The
mosaic model is an indicator of strong NDVI discontinuities within
the image mainly generated by anthropogenic processes such as
the mosaic pattern of crop sites. The multi-Gaussian model shows
evidence of diffuse and continuous variation of NDVI generally
engendered by ecological and environmental processes such as the
fuzzy pattern observed over forest and natural vegetation sites.

Index Terms—First-order variogram, landscape, multi-
Gaussian model, normalized difference vegetation index (NDVI),
Poisson line mosaic model, second-order variogram, spatial
structure, stochastic simulation.

1. INTRODUCTION

HE MONITORING of Earth surface dynamic processes
such as primary production or carbon and water fluxes
requires observations of the Earth surface properties at the
proper spatial and temporal scales. Remote sensing data are
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particularly appropriate to describe surface processes since
they provide continuous and frequent spatial estimates of key
Earth surface variables [1]. Contrary to in situ data, remote
sensing observations may exhibit the spatial heterogeneity of
the retrieved surface property. This information helps charac-
terizing the nature of the processes structuring the landscape
[2], identifying their scale of spatial variation [3]-[6] and thus
improving their representation in land surface models [7]-[9].
In addition, quantifying the surface spatial heterogeneity from
remote sensing data are required to correct the bias associ-
ated with nonlinear estimation of land surface variables over
heterogeneous pixels [10], [11] and for the disaggregation of
coarse spatial resolution images to retrieve the surface property
of objects smaller than the pixel size [9], [12], [13]. Appropriate
methods must thus be established to extract and efficiently ex-
ploit the spatial heterogeneity information contained in remote
sensing image.

Garrigues et al. [14] define the spatial heterogeneity of a
surface property measured from remote sensing sensor through
two components.

1) The spatial variability of the surface property over the
observed scene as measured by the variance of the image.

2) The spatial structures: they are defined in this paper as
patches or objects (e.g., agricultural fields, vegetation
patches,. . .) that repeat themselves independently within
the observed scene at a characteristic length scale (i.e.,
spatial scale) which represents the extent of the spatial
structure. They can be viewed as the typical correlation
area (i.e., the typical area of influence) of the surface
property. Spatial structures within remotely sensed im-
ages are identifiable in that their spectral properties are
more homogeneous within them than between them and
other scene elements [15]. Data are often distributed into
independent sets of spatial structures, related to different
length scales and spatial variability, being overlaid in the
same region.

This paper focuses specifically on the characterization of
the spatial structures observed within remote sensing images.
These spatial structures are specific to the measured surface
property. The Normalized Difference Vegetation Index (NDVI)
computed from red and near infrared reflectances [16] is the
“state” variable used in this paper to describe the spatial struc-
tures of the landscape vegetation cover.

The characterization of the image spatial structures depends
both on the geographic extent of the observed scene and on
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Fig. 1.
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(b)

Examples of landscape spatial structures characterized from high spatial resolution NDVI images (SPOT-HRV sensor at 20-m spatial resolution).

(a) Cropland associated with mosaic spatial structure of the fields. (b) Forest site associated with fuzzy spatial structure of the vegetation cover.

the size of the spatial support on which the signal is integrated
[17]-[20]. A scene must be large enough compared to the extent
of the spatial structures to encompass their spatial variability
[14]. In this paper, the spatial structures of vegetation cover
are analyzed at the landscape level defined as an area of few
square kilometers (9 to 50 km?). Garrigues ef al. [14] show
that this area is large enough to resolve the spatial variability
of most landscape spatial structures. The size of the spatial
support of remote sensing data involves two characteristics of
the sensor: the ground sampling distance (GSD) and the point
spread function (PSF). The GSD is the size of the ground
projection of the sensor instantaneous field of view which is
approximated by the pixel of the image. Its value at nadir
defines the nominal pixel size of the image. In addition, the
sensor system applies a low pass spatial filter to the radiometric
signal, characterized by the PSF. The width of the PSF affects
the size of the actual spatial support of the data which may
be larger than the GSD. The combination of PSF and GSD
determines the minimum size of the objects detected by the
sensor. A surface spatial structure cannot be captured by the
data when the size of the spatial support of the data is larger than
the extent of the spatial structure [14]. The size of the spatial
support of high spatial resolution data (e.g., Satellite Pour I’
Observation de la Terre High Resolution Visible (SPOT-HRV),
GSD = 20 m) is small enough to resolve the spatial structures
of most landscapes [14]. It is also large enough to limit the noise
generated by spatial structures at very small length scales that
may hamper the proper characterization of the spatial structures
of vegetation cover at the landscape level [14].

In addition, the shape and the variability associated with the
spatial structures of vegetation cover depend on the type of
landscape [14]. Cropland spatial structures are generally char-
acterized by a mosaic pattern and generate large NDVI spatial
variability [Fig. 1(a)]. Spatial structures of natural vegetation

and forest have fuzzier pattern and are associated with smaller
NDVI variability than agricultural field structures [Fig. 1(b)].

Several metrics can be used to describe the spatial varia-
tions within an image. Julesz [21] underlines that one point
statistics (e.g., image histogram) are not efficient to describe
image spatial variations since they do not account for spatial
correlations between data. Two point statistics which describe
the spatial relationships between data are thus more appropriate
[21]-[23]. Garrigues et al. [14] provide a comparison of some
two point statistics metrics used to explore the spatial varia-
tions within an image which includes Haralick indexes [23],
fractal and multifractal analysis [24]-[28], Fourier transform
[29], [30], wavelet transform [6], [25], [30], and second-order
variogram [15], [31]-[37]. Among these metrics, it is shown in
Garrigues et al. [14] that modeling the second-order variogram
of high spatial resolution NDVI image is an efficient method
to characterize the spatial structures of the landscape. In their
approach, variogram parameters are related to the length scales
and the spatial variability associated with each set of spatial
structures being overlaid in the image.

However, Gagalowicz [22] shows that the information pro-
vided by the second-order variogram is not always sufficient
to discriminate different types of spatial structure. This fact is
also illustrated in Chilés and Delfiner [32] in which it is shown
that several models of random functions can have exactly the
same theoretical second-order variogram. In this paper, we pro-
pose to use another geostatistic tool, the first-order variogram
which, together with second-order variogram, will prove to be
powerful to describe the image spatial structure. Up to now,
the first-order variogram has never been applied to remote
sensing imagery. In addition, no studies have been specifically
focusing on modeling the characteristics of the image spatial
structures such as their size and shape in order to characterize
the underlying processes structuring the landscape.
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TABLE 1
DATA BASE (DETAILED INFORMATION ON EACH SITE ARE AVAILABLE
ON THE VALERI WEB SITE www.avignon.inra.fr/valeri). DATE IS THE
ACQUISITION MONTH OF THE IMAGE. mNpvy1 AND onNDvI ARE THE
MEAN AND STANDARD DEVIATION OF THE NDVI IMAGE

Site name Biome (FAO classification) Date | Latitude | Longitude | mypys | onpy;
Fundulea01 Cropland May 44.41 26.58 | 0.51 | 0.23
SudOuest02 | Cropland July 43.51 124 | 0.50 | 0.17
Alpilles02 Cropland July 43.81 474 | 038 | 0.16
Jarvselja0l Mixed forest July 58.29 2729 | 0.82 | 0.05
Nezer01 Needleleaf forest (pine forest) June 4451 -1.04 | 0.66 | 0.06
Puechabon01 | Closed shrubland (Mediterranean. June 43.72 3.65| 0.54 | 0.10
vegetation)

The objective of this paper is to develop an approach based
on stochastic models and the simultaneous use of both first-
and second-order variograms in order to characterize the spatial
structures of various types of landscape from high spatial
resolution NDVI images. The rest of this paper is organized
as follows. Section II describes the six SPOT-HRV scenes
extracted from the Validation of Land European Remote sens-
ing Instruments (VALERI) database and used in this paper to
describe the spatial structures of the landscape vegetation cover.
In Section III, the stochastic models used to model the spatial
structures within remote sensing images are presented. The
limitation of the second-order variogram and the potentials of
the simultaneous use of both first- and second-order variograms
to describe distinct image spatial structures are illustrated on
simulated images in Section IV. Section V is dedicated to the
method used to estimate the parameters of the stochastic models
characterizing the image spatial structures. In Section VI, the
implemented method is first validated on simulated images and
then applied to the actual SPOT-HRV NDVI images of the land-
scapes under study. Finally, the accuracy of the implemented
method is discussed in Section VII.

II. DATA DESCRIPTION

The data used here are part of the VALERI database
(www.avignon.inra.fr/valeri; [38]) which provides SPOT-HRV
scenes at 20-m spatial resolution for several landscapes sampled
through the world. For this paper, six contrasted spatial hetero-
geneity sites were selected (Table I). Each site has the following
characteristics: 3 x 3 km size; flat topography; it contains one
or two types of vegetation. The vegetation cover is described
over each SPOT-HRYV scene by the NDVI, denoted z () (where
x represents an image pixel), computed from red (r(x)) and
near infrared (p(x)) SPOT-HRV spectral bands

_ plz) —r(@)
(@) = ) ()

The SPOT-HRV scenes are georeferenced in the UTM/
WGS84 projection. They are not contaminated by clouds. They
are not corrected for atmospheric scattering and absorption.
But, for most scenes, the atmospheric effects are low in the
red and near-infrared bands and their spatial variability is small
over 3 x 3 km scenes [38].

The characterization of landscape spatial structures from the
selected NDVI images requires several hypotheses. H;: the
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image extent (3000 m) is large with respect to the spatial
features of interest, and any spatial structures extending beyond
the image extent is considered as apparent trends. Hs: the
radiometric measurement errors (cloud detection, atmospheric
effects, view geometry and illumination effects, shadow effects,
resampling effects,. ..) are small relative to the surface varia-
tions. Because the combination of the PSF and the GSD of the
sensor are such that effects of spatial variations within a pixel
are very small relative to the environmental variations, we state
the following third hypothesis. H3: spatial variations at a scale
smaller than the GSD can be neglected. In addition, we consider
high spatial resolution radiometric data as punctual (Hy).

III. STOCHASTIC MODELING

Remote sensing images will be considered as realizations of
second-order stationary stochastic processes Z(x) also called
random functions [32]. Second-order stationarity of the random
function Z(x) supposes the existence and the stationarity of the
first two moments [32], [39]

EZx)]=m Cov(Z(z),Z(x+h))=C(h) (2)
for all image pixels x and vector h between two image pixels.
The function C(h) is the covariance function of Z(z). It
characterizes the spatial distribution of Z(x). In the following,
we will consider isotropic stochastic processes, for which the
covariance function is a function of the Euclidian distance || A||
only. Under second-order stationarity assumption, the second-
order variogram 75 (h) of Z(x) which describes the variabil-
ity between two pixel values of the image separated by a
distance ||h||

v2(h) = 0.5Var [Z(x + h) — Z(x)] 3)

is related to the covariance function according to the
relationship

Y2(h) = 0® — C(h) ©))

where o2 is the variance of Z(x). Note that the second-order
variogram is the ‘“usual” variogram used in the geostatistic
literature. It is a function starting from O for ||h|| =0 and
ultimately converging to the sill o2 as ||| tends to infinity. The
range of the second-order variogram is the distance at which it
reaches a sill. Data separated by a distance larger than the range
are uncorrelated. The range is related to the length scale (i.e.,
spatial scale) of the data.

Since the existence of finite second-order moments (i.e.,
covariance function and second-order variogram) implies the
existence of finite first-order moments, one can also define the
first-order variogram of Z(z), y1(h) [32]

0k = 3B 12 + 1) - Z(@)]. ©

It will be shown in Section III-B2 that the first-order
variogram provides some additional information to the
second-order variogram, that will prove to be useful for char-
acterizing image spatial structures.
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Fig. 2. Images simulated according to the three following random functions: (a) Zg(z) is the pure multi-Gaussian model (w2 = 1); (b) Zo(x) is the pure
mosaic model (wg = 0); (c) Z4(z) is the linear combination of the mosaic and multi-Gaussian model with 50% of variance weight associated with each model

(w? =0.5).

In this paper, we consider that the image spatial structures
are a combination of two stochastic second-order stationary
models. The first model corresponds to diffuse images and
continuous variations; it is the multi-Gaussian model denoted
Zg(z). The second model is a tessellation model: The domain
is randomly separated into nonoverlapping cells; in each cell
a constant, yet random, value is independently drawn. It is
called the mosaic model and is denoted Z,,(z). The linear
combination of these two stochastic models defines the mixture
model. A set of images simulated from the mixture model will
be used to establish a method to characterize the image spatial
structures.

The following section presents in more details the two sto-
chastic models used in this paper. The second section describes
the mixture model along with the theoretical expressions of its
first- and second-order variograms.

A. Two Stationary Stochastic Models

1) Multi-Gaussian Model (Zg(x)): A random function
Zg(z) is a multi-Gaussian random function if any finite vector
Z = (Z(z1),...,Z(xy,)) is distributed according to a mul-
tivariate Gaussian distribution [32]. A stationary multivariate
Gaussian random function is fully characterized by its mathe-
matical expectation m and its covariance function C'(h). Many
different algorithms are available to generate nonconditional
simulations of the multi-Gaussian model [40]. We have used the
turning band method [32]. In the following, we will consider
standard multi-Gaussian models for which m = 0 and o? =
C(0) = 1. If the parametric family of the covariance function
is specified, the only input parameter for this stochastic process
isits range r,. In this paper, an exponential family of covariance
function is chosen for the multi-Gaussian model. The second-
order variogram of Z,(xz), denoted o ,(h;rg), is thus an
exponential variogram defined by

3|
—eXP{—L”} (6)
g

Yo,g(hirg) =1

where 1, is the practical range of the variogram, i.e., the dis-
tance at which the variogram reaches 95% of the variogram sill
[32]. A realization of a multi-Gaussian random function with
exponential second-order variogram is represented in Fig. 2(a).

For a stationary Gaussian random function Z, (), the differ-
ence Zy(x + h) — Zy(x) is a Gaussian random variable with
mean equal to zero and variance equal to 274 (h; ). Using the
formula for the expectation of the absolute value of a Gaussian
random variable G(z') with zero mean and variance 72

Vot
\/7?

the first-order variogram vy, 4(h; ) (5) of the multi-Gaussian
model is easily shown to be equal to

E|G(x)] = @)

1
Y,g(hirg) = ﬁ Yo,g(hi7g). (8)

2) Mosaic Model—The Poisson Lines Model (Z,(x)): A
mosaic model is a tessellation model that randomly partitions
the image into nonoverlapping cells [32]. To each cell of the
tessellation is independently assigned a value drawn from the
same probability density distribution (pdf). Because each pixel
x belongs to only one cell, this model defines a random function
Zwm (), that can be described by its covariance function. The
Poisson tessellation model [41] is a tessellation generated by
Poisson random lines. A line is fully specified by two parame-
ters: a direction, denoted v with « in [0, 27), and a distance
to the origin, denoted d with d > 0. Poisson random lines are
distributed according to the following random process. The
number of lines intersecting the image, denoted N (I), is first
drawn from a Poisson distribution with parameter Y;. Then,
each line is drawn with independent uniform distributions for
«a and d, subject to the condition that the line intersects the
image. The only parameter driving the Poisson random lines
model is the parameter Y;: to large values of Y; correspond
small cells and vice versa. Regarding the random values in
the cells, we will consider in this paper the case of indepen-
dent standard (m = 0, 0% = 1) Gaussian random variables. The
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combination of Poisson random lines and independent standard
(0, 1) Gaussian random variables within each cell defines our
mosaic random function Zy,(z). A typical realization of a
Poisson tessellation random function is depicted in Fig. 2(b).
Lantuéjoul [41] shows that the covariance function Cy,(h) of
the mosaic model has an exponential form

Cov (Zm(x), Zm(x + h)) = C(h) = exp {_Srhn} ©)
with
3L
™9 N()

(10)

where L is the image perimeter and 7, is the practical range
of Cp,(h). The second-order variogram of the mosaic model,
denoted 72y, (h; 7m ), is thus an exponential variogram

3||h
72,m(h;7"m) =1 eXP{”}- (11)
T'm
It will be shown in Section III-B2, that the first-order vari-
ogram of the mosaic model is defined by

1
ﬁ’)’z,m

It is important to stress that, by construction, both random
functions Z,(z) and Z,,(x) have the same marginal standard
(0, 1) Gaussian distribution. Moreover, because we have cho-
sen an exponential covariance for the multi-Gaussian model,
they are both characterized by the same exponential family
of second-order variogram model. But they have different
first-order variogram. More importantly, the mosaic model is
characterized by a linear relationship between the first- and
second-order variograms (12), while the multi-Gaussian model
is characterized by a quadratic relationship (8). This difference
will be the basis of the method presented in Section V for
distinguishing between the two stochastic processes.

’Yl,m(h; Tm) = (h, Tm)- (12)

B. Mixture Model

The two models defined above are now combined to define
the mixture model as follows:

Z() =0 (ng(x) v MZm(x)) +m

where m is the mathematical expectation of Z(x), o2 is its
variance, w? and (1 — w?) are the fractions of the total variance
of Z(x) explained by the multi-Gaussian model Zg(x) and
the mosaic model Z,,(z), respectively. Note that according to
(13), the random function Z(z) has the same marginal (m, o?)
Gaussian pdf for all values w.

The following sections establish the theoretical expression of
the first- and second-order variograms of the mixture model.

1) Second-Order Variogram: Since Z(x) is a weighted sum
of the independent random functions Z,(z) and Z,,(z) (13),
its second-order variogram 7, (h) (3) is the weighted sum of
the second-order variograms of Z,(z) and Z, (x) [32]

13)

Ya(h) = 0% (Wyag(hirg) + (1 — w?)Y2m(hsTm)) . (14)
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Note that if 4 = 71, (14) simplifies as follows:

Y2(h) = 02,5 (h;7g) = 0772,m (B Tn) (15)
for all value w?. Equation (15) shows that the second-order
variogram is the same exponential variogram for all value w?. In
other words, in the case of ry = 7, the second-order variogram
~2(h) cannot distinguish between a multi-Gaussian structure
and a mosaic structure.

2) First-Order Variogram: Establishing the first-order vari-
ogram of the mixture model defined in (13) requires developing
(5) by conditioning on the underlying Poisson line process
used to generate the mosaic model Z,(z). As described in
Section III-A2, the tessellation process of Poisson lines par-
titions the plan into nonoverlapping cells within the image.
The cell values are realization of independent standard (0, 1)
Gaussian random variables. The probability that two image
pixels  and z + h separated by a distance ||h|| belong to
the same cell, denoted event A, is related to the covariance
function of Z,,(x) [41] and thus to the second-order variogram
of Z ()

P(A) = Cn(h) =1—vam(h,rm). (16)

Thus, the probability that they do not belong to the same cell
(event A) is equal to

P(A) =1- P(A) = 72,111(h;rm)- (17)

Conditioning on the event A and A, the theoretical first-order

variogram (5) can be decomposed as follows:

y(h) = 0.5P(A)E (| Z(x + h) — Z(z)| JA]
+05P(A)E [|Z(x +h) — Z(z)| J/A] . (18)

a) Calculation of E[|Z(x+ h) — Z(x)|/A]: According
to (13)

E[Z(w+ 1) - Z(2)| JA] = B[|o (« (Z(z + h) = Zy(x))
+ (1—w2)(Zm(x+h)—Zm(x)))‘/A] (19)

In the case of event A, the locations z and x + h are in
the same cell. As a result, Zy,(z) — Zm(z + h) = 0. Since
Zg(x + h) and Zg(x) are second-order stationary and spatially
dependent standard Gaussian random functions, their difference
is a Gaussian random function with mean equal to zero and
variance equal to 27y, ¢ (h; 7). Using the formula for the expec-
tation of the absolute value of a Gaussian random variable (7),
(19) simplifies as follows:

EllZ(z + h) = Z(2)| JA] =owE [|Zg(z + h) = Zg(2)]]

V2,8(hsrg)

r (20)

=20w
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b) Calculation of E||Z(z + h) — Z(x)|/A]: According
to (13)

E(|Z(w+h) - Z(2)] /4] = B[|o(w (Zy(z + ) - Zy(x))
/(1 = w2) (Zum(z + h) — Zm(x)))’/z}. @1

In the case of the event A, the pixels  and = 4+ h do not
belong to the same cell. Thus, Zy,(x 4+ h) and Z,,(x) are two
independent Gaussian random functions. /(1 — w?)(Zp, (z +
h) — Zn(x)) is thus a Gaussian random function with mean
equal to zero and variance equal to 2(1 — w?). As in the case of
event A, w(Zy(x + h) — Zy(x)) is a Gaussian random function
with mean equal to zero and variance equal t0 2w?Ys o (h; 7).
Therefore, /(1 —w?)(Zm(xz+ h) — Zm(x)) and w(Zg(z +
h) — Zg(x)) are two independent Gaussian random functions.
Their sum is thus a Gaussian random function with mean equal
to zero and variance equal to 2(1 — w?) + 2w?ys 4 (h; rg). Us-
ing the formula for the expectation of the absolute value of a
Gaussian random variable (7), (21) thus becomes

E[|Z(z+h) - Z(z)| /4] = 20 Ve g(hirg) + (1 —w?)
N
(22)

Given (20) and (22), the theoretical first-order variogram of
Z(x) (18) is

mmw:a@a—mam%» g (hi)

+ '727m(h§ rm)\/w%)/?,g(h; rg) + (1 — CUZ):| . (23)

As stated in Section III-A, (23) demonstrates that the re-
lationship between the first- and second-order variograms is
linear for the mosaic model [by replacing w =0 and 0 =1
in (23) we obtain (12)] and quadratic for the multi-Gaussian
model [by replacing w = 1 and ¢ = 1 in (23) we obtain (8)].

Equation (23) shows that even for ry = 7y, the first-order
variogram depends on w?. The first-order variogram can thus
be used to distinguish between a multi-Gaussian structure and
a mosaic structure. We will use this property in Section V.

The following section provides some illustration of these
theoretical results on simulated images.

IV. EXPERIMENTAL RESULTS ON SIMULATED IMAGES

The simulation method consists in first generating an image
from the multi-Gaussian model with the parameter r, and
another image from the mosaic model with the parameter ry,.
These images are then combined according to (13) to produce
an image from the mixture model Z(z). Since the parameters
m and o2 do not affect the characterization of the image spatial
structures, they will be set for all the simulations at m = 0.4
and 0 = 0.04. For a given set of parameters r, and ry,, and for
fixed images Z,(x) and Z,,(z), several random images Z;(z)
are generated by varying the parameter w? (Table II), from
w2 = 0to w? = 1. Each corresponding random function Z;(z),

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 6, JUNE 2007

TABLE 1I
DEFINITION OF THE RANDOM FUNCTIONS Z;(z) AS A FUNCTION OF w?
[2 [ Zo [Z; [Z; [Z3 [Z4 [ 25 [Zs [z [ Zs |
o o [0.125 [025 o036 |05 Jo064 [075 [0.875 |1 |
20 . . : - : 20
mean= 0.39

15

-
o

variance= 0.036

frequency
S

frequency
S

8270 02 04 06 08 1 82 0 02 04 06 08 1
image value image value

(@) (b)

20

mean= 0.40

-
o

variance= 0.038

>
2

g 10 1
o
e

-_-IIIII II.II-_‘

8270 02 04 06 08 1

image value
(c)
Fig. 3. Histograms of the images displayed in Fig. 2 simulated according to

the three following random functions: (a) Zg(x) is the pure multi-Gaussian
model (w2 = 1); (b) Zo(x) is the pure mosaic model (w3 = 0); (c) Z4(z) is
the linear combination of the mosaic and multi-Gaussian model with 50% of
variance weight associated with each model (w? = 0.5).

1=0,...,8, i.e., each corresponding image spatial structure,
will thus be defined by the three parameters rg, 7, and w?.

The simulations are performed over a raster grid of 150 x
150 pixels with a pixel size of 20 m. To limit the influence
of the variability within the stochastic process, 20 images are
generated for a given random function Z; (). All experimental
metrics used to describe the image along this paper are averaged
over the 20 images.

In this section, we consider mixture models characterized by
the same Gaussian pdf (m = 0.4 and o2 = 0.04), as well as
the same theoretical exponential second-order variogram with
rg = rm = 300 m.

Fig. 2 exhibits three images simulated from different mixture
models Z;(x): a pure mosaic model (Zy(z),w? = 0), a pure
multi-Gaussian model (Zg(z),w? = 1) and a balanced mixture
of both models (Z4(x),w? = 0.5). The spatial structures dis-
played by these images are visually distinct.

As stated above these images have the same theoretical
Gaussian histograms. Fig. 3 provides the histogram computed
on the images displayed on Fig. 2. As expected, the general
shape is identical for all histograms, with increasing statistical
fluctuations as the proportion of the mosaic model increases
(see comment on this point below). This illustrates results
from Julesz [21] who demonstrated that one point statistics
(e.g., image histogram) are not sufficient to characterize the
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Fig. 4. Experimental second-order variograms computed over images sim-
ulated from the random functions Z;(z), (¢ =0,...,8). The thick black
line represents the theoretical second-order variogram (exponential model with
Tg = Tm = 300 m) used for the simulations.

image spatial structures since they do not describe the spatial
correlations between data.
The experimental second-order variogram

1
2N (h

2,6 (h) = (2(za) — 2(zp))*  (24)

o=z sll~|hll

measures the average of squared differences between values
z(x4) and z(z ) of all pairs of pixels (zq,zg) separated by a
distance ||z, — xg|| = ||h||. N (h) is the number of the pairs of
pixels separated by the distance ||h||. The experimental second-
order variogram is the estimator of the theoretical second-order
variogram presented in (3). Fig. 4 displays the experimental
second-order variogram computed over images simulated from
the random functions Z;(z), (¢ =0,...,8) along with the
theoretical exponential second-order variogram of Z(z). The
experimental second-order variograms are similar and close to
the theoretical variogram. Similarly to histograms, variograms
display increasing statistical fluctuations as the proportion of
the mosaic model increases in the mixture model (decreasing
w). The reason is that the simulations of the mosaic model
are more variable than those of the multi-Gaussian model.
This could be shown using theoretical properties of the mosaic
model, but for the sake of brevity, we will not elaborate on this
specific topic.

Fig. 4 thus illustrates the theoretical result of Section III-B1
demonstrating that for ry = r, the second-order variogram
~2(h) cannot distinguish between a multi-Gaussian structure
and a mosaic structure. It also illustrates the more general fact
pointed out by Gagalowicz [22], that the information provided
by the second-order variogram may not be sufficient to discrim-
inate the image spatial structures.
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Similarly to (24), the experimental first-order variogram is
computed according to

1
oN (h)

Ye(h) = (25)

|2(za) = 2(zp)| -

[za—zsll~h

The experimental first-order variogram is the estimator of
the theoretical first-order variogram presented in (5). Fig. 5
exhibits for each image simulated according to the random
functions Z;(z), (i =0,...,8) the normalized experimental
second-order variogram (27) as a function of the normalized
experimental first-order variogram (26)

Nem(h) =257 (26)
Y2,
72,e,n(h) = 0_2 . (27)

Each random function Z;(x) has a different (v ¢ (h);
Y2,e.n(h)) signature which varies with the variance weight w?
of the multi-Gaussian model with respect to that of the mosaic
model. Fig. 5 illustrates the theoretical result of Section I1I-B2
showing that the relationship between first- and second-order
variograms is linear for the mosaic model (w? =0) and
quadratic for the multi-Gaussian model (w? = 1).

This result suggests using simultaneously both first- and
second-order variograms to describe the image spatial struc-
tures as the result of the combination of a multi-Gaussian and
mosaic model. The following section presents a method based
on this result to characterize the spatial structures within the
images.

V. ESTIMATION OF THE MIXTURE MODEL PARAMETERS

The approach consists in describing the spatial structures
of the NDVI images under study using the mixture model
Z(z) (13), i.e., as the result of the combination of a mosaic
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and a multi-Gaussian model. The experimental variogram met-
rics 71 (h) and 3 .(h) computed over the image are used
as estimators of the theoretical variograms ~; (k) and ~2(h),
respectively, to retrieve the parameters w2, g, and 7y, charac-
terizing Z(z). A lookup table (LUT) is used to estimate the
parameters w2, rg, and 7. It relates the values of the theoretical
first- and second-order variograms computed for Vg class of
distances to different combinations of the parameters w?, Tg,
and 7. The values of the variogram ranges r, and 7y, are
investigated between 25 and 1600 m with a discretization step
equal to 25 m. The underlying hypothesis is that the second-
order variogram reaches a sill before 1600 m, which is the case
for most images under study [14]. The parameter w? is defined
within the interval [0, 1] with a discretization step of 0.01. The
variance o2 of Z () is assumed to be known a priori and for the
simplicity of the exposition it will not be retrieved as an image
parameter. For the NDVI images under study, we will use the
values of o2 which have been independently estimated from
second-order variogram modeling by Garrigues et al. [14].

The estimation method consists in computing the least square
criteria Cr

c —i§d3< (hs) - (h->>2+i§dj< (h) =2 (o) P
r_Nd P Y1,e\/2 Y1l Nd gt v2,e\/; AU

(28)

between the LUT elements (1 (h) and v2(h)) and the experi-
mental variograms (1.(h) and 73 ¢(h)). The LUT is then or-
dered by increasing Cr values. The solutions, i.e., the estimated
parameters wgst, Tg est» ANd T est, are defined as the mean of
the N first elements of the LUT. In this paper, Vs is chosen
equal to 1000 that corresponds to reasonable low Cr criteria
[42], [43].

VI. RESULTS
A. Application on Simulated Images

The estimation method presented in Section V is first applied
to two images simulated from the random functions Z;(x)
and Z,(z) with the following parameters: r, = 600 m, 7, =
200 m, w? = 0.125, and w3 = 0.5. The estimated parameters
for Z1(z) are wk; = 0.116; rg est = 697 M; 7y est = 235 m.
The estimated parameters for Z4(z) are w2, = 0.449; rg ost =
663 m; 7 st = 245 m. Fig. 6 displays for Z; (x) and Z, (z) the
experimental first- and second-order variograms computed over
the simulated images, the theoretical first- and second-order
variograms of the random function along with the first- and
second-order variograms computed with the estimated parame-
ters. Some discrepancies are observed between the estimated
parameters wgst, Tg est> aNd 7'y os¢ and the theoretical parame-
ters w?, rg, and ry, of the random functions Z; (z) and Zy(x).
Since simulated images are single realizations of stochastic
processes, differences are normally expected between the actual
parameters used to generate the image and those estimated
from the image. In addition, the discretization step used to
compute the elements of the LUT limits the possible range of
the retrieved parameter values and thus decreases the accuracy

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 6, JUNE 2007

Z,(x V4
0.12 1) 0.04 4(X)
01 g 0.035]
g 5 0.03
0.08 ke|
B 5 0.025
@ > i
z j
= 0.06 ---experimental variogram g 0.02f f — - [vari
8] Cmaedvan | | 8] | et veregam
2004 - theoretical variogram 2 --theoretical varioggram
2 S 0.01
T 0.02 8
: 0.005|
00 200 400 600 800 G0 200 400 600 800
distance (m) distance (m)
(a)
Z (X Z,(x
0.12 o 0.04 A )___ ______
c 01 g 0.035]
I g, 0.03
) k)
8008 5 0.025
I >
Z 0.06! ---experimental variogram S 0.02 ---experimental variogram
3 —estimated variogram g —estimated variogram
é 0.04 -~ theoretical variogram © 0.015 - theoretical variogram
@ I}
= 002 8 0.01
' ® 0.005
0
0 200 400 600 800 00 200 400 600 800

distance (m) distance (m)

(b)

Fig. 6. Result of the estimation of the first and the second-order variograms
from images simulated from (a) the random function Z1 (z) (w? = 0.125) and
(b) the random function Z4(z) (w2 = 0.5) both defined by 7 = 200 m and
rg = 600 m.

TABLE III
PARAMETERS (wgst, Tg,est» AND T'm est) OF THE MIXTURE MODEL Z ()
ESTIMATED FROM EACH SPOT-HRV NDVI IMAGE. w2, Tg est, AND
Tm,est ARE THE MULTI-GAUSSIAN WEIGHT, THE MULTI-GAUSSIAN
RANGE, AND THE MOSAIC RANGE, RESPECTIVELY

sites W2y Fgest Fm,est
Fundulea01 0.0004 923 m 915m
SudOuest02 0.07 837 m 642 m
Alpilles02 0.07 466 m 375m
Jarvselja01 0.44 940 m 571 m
Nezer01 0.44 361 m 1280 m
Puechabon01 0.42 325 m 1287 m

of the estimation. However, the objective of this paper is to
describe the spatial structures observed within a given image.
The accuracy of the estimation must thus be evaluated by
the quality of the adjustment between the estimated and the
experimental curves of the variogram. As displayed by Fig. 6,
the adjustments are very accurate for the simulated images.

B. Characterization on Landscape Images

The approach is now applied to the actual NDVI images
presented in Section II to characterize the spatial structures of
the vegetation cover over distinct landscapes. Table III provides
the parameters wgst, Tgest» aNd Ty or estimated from each
NDVI image. Results are analyzed per type of landscape as
follows.

1) Crop Sites: Fig. 7 displays the experimental first- and

second-order variograms computed over the NDVI images of
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Fig. 7. Result of the estimation of the first- and the second-order variograms
from the NDVI images of crop sites. Table III provides the parameters of the
mixture model estimated from each NDVI image.

crop sites along with the first- and second-order variograms
computed with the estimated parameters of the mixture model
applied to these sites.

The fraction (1 — w?) of the total image variance explained
by the mosaic component of the mixture model Z(x) is
generally higher than that explained by the multi-Gaussian
component (w?). It highlights the mosaic pattern of the agri-
cultural fields which is mainly the result of anthropogenic
processes (field shape and size, seedling and harvesting date,
crop rotation,. . .). The range of the mosaic model ry, is gener-
ally related to the mean size of the fields. It varies from large
fields (FunduleaOl, r, = 915 m) to small fields (Alpilles02,
rm = 375 m). However, the characterization of the field sizes
by the variogram ranges is a nontrivial issue. Indeed, it may
be disturbed by the gathering of fields with similar NDVI
values which create larger apparent spatial structures (e.g.,
SudOuest02).

On Fundulea01 the mosaic component explains almost 100%
of the NDVI overall variability. As shown on Fig. 1(a), this
site is characterized by a mosaic of bare soil fields with low
NDVI values and mature crop fields with high NDVI values.
The regular and strong discontinuities of NDVI between fields
and the low NDVI variability within the fields explain that the
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Fig. 8. Result of the estimation of the first and the second-order variograms
from the NDVI images of natural vegetation and forest sites. Table III provides
the parameters of the mixture model estimated from each NDVI image.

NDVI spatial structures of this site are accurately described by
the Poisson lines of the mosaic model.

In contrast, on Alpilles02 and SudOuest02, the fraction of
variance of the multi-Gaussian model w? is nonnull. It charac-
terizes diffuse spatial structures associated with more continu-
ous variation of NDVI than between crop fields. These spatial
structures are caused by small variation of vegetation cover
within forest and fallow area. However, these diffuse spatial
structures explain a much lower NDVI variability (w? = 0.07)
than the mosaic of agricultural fields which is the main spatial
structure of crop sites.

2) Natural Vegetation and Forest Sites: Fig. 8 displays the
experimental first- and second-order variograms computed over
the NDVI images of forest and natural vegetation sites along
with the first- and second-order variograms computed with
the estimated parameters of the mixture model applied to
these sites.

The fraction of image variance explained by the multi-
Gaussian model is generally larger on natural and forest vege-
tation sites (w? close to 0.36) than on crop sites. It describes the
fuzzy pattern of the vegetation cover associated with smoother
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puted with the parameters of the mixture model estimated from the NDVI
images of the landscapes under study. The solid and black lines represent crop
sites characterized by a high variance weight of the mosaic model, i.e., low
w?. The dash and gray lines correspond to natural vegetation and forest sites
characterized by a higher variance weight w? of the multi-Gaussian model than
on crop sites.

NDVT spatial continuity than observed over agricultural land-
scapes. These patterns correspond to various sources of NDVI
variability, including the understory cover, the density, height
and type of trees, and the presence of open areas. They are
mainly generated by ecological processes (light availability,
species competition,...) and environmental processes (pres-
ence of water, soil salinity, microtopography, geomorophologic
factors,. . .).

However, the mosaic model still explains the major part of
the overall NDVI variability over these sites. In agreement with
results found on crop sites, it characterizes spatial structures
generated by anthropogenic processes, including the rectangu-
lar field patterns of the forest plantation, the presence of roads
or singular objects (quarry on PuechabonO1).

These examples illustrate the potential of the mixture model
to characterize the nature of the processes structuring the
landscape. The mosaic model describes mosaic spatial struc-
tures associated with strong NDVI discontinuities generally
generated by anthropogenic processes while the multi-Gaussian
model shows evidence of diffuse spatial structures associated
with continuous variation of NDVI engendered by ecologi-
cal and environmental processes. This approach can thus be
used to discriminate different types of landscape as shown by
Fig. 9 which displays for each site under study, its normalized
second-order variogram as a function of its normalized first-
order variogram both computed with the estimated parameters
of the mixture model.

VII. ACCURACY OF THE ESTIMATION OF THE
MIXTURE MODEL PARAMETERS

The adjustment of the first- and second-order variogram
curves and thus the estimation of the parameters w2, g st
and 7y, st 1S less accurate on the actual NDVI images (Figs. 7
and 8) than on the simulated images (Fig. 6). This is particularly
true on forest and natural vegetation sites.
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The main reason is that the hypothesis on which the mixture
model relies are only partly verified over actual images. For
NezerO1 or PuechabonO1, the experimental second-order vari-
ograms do not reach a stationary sill at the image scale. Thus,
it implies that the second-order stationarity hypothesis charac-
terizing the multi-Gaussian and mosaic random functions is not
consistent with the data [14]. This is due to spatial structures
extending beyond the image extent creating apparent trends in
the image. Larger image size would be more appropriate on
these sites to characterize their spatial structures.

In this paper, the images are considered as realizations of
Gaussian random function. However, most investigated images
have not Gaussian histogram. It is not trivial to relate this issue
to the quality of the adjustment of the variogram curves. Further
work is required to evaluate the impact of the non-Gaussian
histogram of the images on the characterization of the image
spatial structure by the mixture model.

Besides, within the class of mosaic models, Poisson lines
may be not realistic enough to model the mosaic spatial
structures observed in the landscape. This model was chosen
because it was the only mosaic model for which the theoretical
expressions of its first- and second-order variograms were
available. Other mosaic models such as Voronoi polygons or
nested lines model could also be considered but further work
is required to establish the theoretical first-order variogram of
these models.

The characteristics of the retrieval method also affect the
accuracy of the estimation. We currently use a LUT method.
Once the table is generated, this method is easy to implement,
easy to use and fast enough. In addition, it leads to a global
solution and avoids selecting a local minimum as it may be the
case with other optimization system. However, the precision of
the LUT method depends on the size of the table generated.
Thus, results may vary with the discretization steps used to
retrieve the parameters w?, 7y, and ry,. In this paper, the
finest discretization steps have been chosen given the available
computing resources at the time of this paper. Additional work
should evaluate whether finer discretization steps than those
used in this paper increase the accuracy of the estimations.

Finally, the second-order variogram sill o2 is not retrieved
by the LUT. It has been independently estimated from second-
order variogram modeling by Garrigues et al. [14]. This a priori
value of o2 forces the adjustment of the second-order variogram
sill. But it limits the possibilities for adjusting the sill of the
first-order variogram for some sites (e.g., JarvseljaOl). Thus,
it should be included in the LUT parameters and it should
be concurrently estimated with the others parameters of the
mixture model.

VIII. CONCLUSION

This paper provides a new approach to characterize the spa-
tial structures within remote sensing imagery using stochastic
models and geostatistic metrics.

The second-order variogram has been widely used in
previous studies to describe the spatial variations within remote
sensing image. We demonstrated here that the information
contained by the second-order variogram may not be sufficient
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to discriminate image spatial structures which are visually
distinct. We introduced a new tool, the first-order variogram,
which used in combination with the second-order variogram,
demonstrated its efficiency to describe the image spatial
structures.

We developed a method based on the simultaneous use
of both first- and second-order variogram to characterize the
image spatial structures. In this method, the image spatial
structures are modeled as a weighted linear combination of two
stochastic models: a Poisson line mosaic model and a multi-
Gaussian model. The mosaic model is a tessellation model
partitioning the image into nonoverlapping cells associated with
constant and random value while the multi-Gaussian model
generates diffuse and continuous variation in the image. The
mosaic model is characterized by a linear relationship be-
tween the first- and second-order variograms, while the multi-
Gaussian model is characterized by a quadratic relationship.
This difference is the basis of the method for distinguishing
between the multi-Gaussian and the mosaic model. Each (mo-
saic and multi-Gaussian) model describes one spatial structure
within the image and is characterized by the range of its second-
order variogram and the fraction of the total image variance ex-
plained by the model. The model parameters are estimated from
the experimental first- and second-order variograms computed
over the image using a LUT. The retrieval method was validated
on a set of simulated images showing its accuracy to estimate
the model parameters.

Then, the method was applied to actual SPOT-HRV NDVI
images extracted from the VALERI database in order to char-
acterize the spatial structures of distinct landscapes. The mosaic
model describes strong NDVI discontinuities in the image gen-
erally generated by anthropogenic processes such as the mosaic
spatial structure of agricultural sites. In contrast, the multi-
Gaussian model shows evidence of diffuse and continuous
variation of NDVI engendered by ecological and environmental
processes such as the fuzzy pattern observed over forest and
natural vegetation sites.

Several points of the method proposed in this paper can be
improved by further studies. For few landscapes, the 3000 x
3000 m image size used in this paper was too small to en-
compass the extent of the landscape spatial structures. Further
studies are needed to evaluate the required size of images.
Regarding the LUT retrieval method, a finer sampling of the
parameter ranges should be used to increase the accuracy of
the estimations. The total image variance should also be con-
currently estimated with the other parameters to avoid forcing
the adjustment of the variogram sills. Regarding the model
hypothesis, since most of the NDVI images under study have
not Gaussian histogram, other probability distribution functions
than the Gaussian distribution used in this paper should be
tested. In addition, other types of mosaic models (e.g., Voronoi
polygons or nested lines model) should also be considered
to provide more realistic description of the landscape spatial
structures than that given by the Poisson line mosaic model.

Finally, the approach provided in this paper is powerful
to characterize the nature of the processes structuring the
landscape that is promising for a range of applications. The
main finding of this paper is that the mosaic model is an
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indicator of anthropogenic processes and the multi-Gaussian
model describes environmental and ecological processes. This
result can thus be used as an indicator of change of land surface
type to monitor the anthropogenic effects on the landscape such
as the conversion of natural vegetation area into agricultural
area. However, this result is limited by the number, the type, the
low complexity, and the small size of the landscapes analyzed.
A more representative sampling of landscape types is required
to refine this conclusion. In particular, it would be interesting
to test if natural landscapes which have not been affected by
human activities are characterized by a large variance weight of
the multi-Gaussian model. Further works should also consider
larger area and more complex landscapes in terms of different
types of vegetation, land use, topography features, and soil
properties.
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