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Abstract

Remote sensing often involves the estimation of in situ quantities from remote measurements. Linear regression, where there are no non-

linear combinations of regressors, is a common approach to this prediction problem in the remote sensing community. A review of recent

remote sensing articles using univariate linear regression indicates that in the majority of cases, ordinary least squares (OLS) linear regression

has been applied, with approximately half the articles using the in situ observations as regressors and the other half using the inverse

regression with remote measurements as regressors. OLS implicitly assume an underlying normal structural data model to arrive at unbiased

estimates of the response. OLS regression can be a biased predictor in the presence of measurement errors when the regression problem is

based on a functional rather than structural data model. Parametric (Modified Least Squares) and non-parametric (Theil-Sen) consistent

predictors are given for linear regression in the presence of measurement errors together with analytical approximations of their prediction

confidence intervals. Three case studies involving estimation of leaf area index from nadir reflectance estimates are used to compare these

unbiased estimators with OLS linear regression. A comparison to Geometric Mean regression, a standardized version of Reduced Major Axis

regression, is also performed. The Theil–Sen approach is suggested as a potential replacement of OLS for linear regression in remote sensing

applications. It offers simplicity in computation, analytical estimates of confidence intervals, robustness to outliers, testable assumptions

regarding residuals and requires limited a priori information regarding measurement errors.
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1. Introduction

1.1. Remote sensing

Quantitative remote sensing involves the prediction of

in situ quantities based on remote measurements of

radiation. This prediction problem relies on a model (either

statistical or physically based) relating remote and in situ

measurements.
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1.2. Statistical models

Both the theoretical complexity in designing physically

based models for radiative transfer in natural environments

as well as uncertainties in specifying model parameters

often lead to the use of simplified models derived to a lesser

or greater degree using statistics based on paired remote and

in situ measurements. Linear models relating in situ

measurements to simple numerical transformations of

remote measurements, together with available ancillary

information, may be sufficient when the goal is prediction

of in situ quantities rather than understanding radiative

transfer processes. Using statistical terminology, this is a

regression problem. The remote measurements are regres-

sor variables and the in situ quantities are response
ent 95 (2005) 303–316
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variables. This nomenclature is used to distinguish the

variable we wish to determine (response) based on the

observations available (regressors) and does not necessarily

specify a physically based relationship between these two

sets of variables. The term linear implies that response

variables are estimated as a linear combination of, in

general, non-linear functions of individual regressors as

long as no term in the regression equation includes more

than one regressor. In this sense, knowledge of radiative

transfer and measurement errors can still be used to define

suitable regressors based on non-linear combinations of

remote measurements. A widespread example is the use of

spectral vegetation indices based on non-linear combina-

tions of directional hemispherical reflectance in an attempt

to provide regressors that may be related to vegetation

structure while at the same time minimizing noise due to

sensor calibration, atmospheric properties, view and illumi-

nation geometry and soil or understory reflectance.

1.3. Ordinary least squares linear regression

1.3.1. Basic definition and reference

Ordinary Least Squares (OLS) linear regression is widely

used to infer linear regression model parameters in the

remote sensing literature. Some studies fit model parameters

with the in situ variable as a regressor and others do the

reverse. We shall demonstrate that, in some cases, both of

these approaches are incorrect.

OLS provides the unbiased minimum mean squared error

estimate of response variables using a linear combination of

regressors under a number of assumptions. The term

unbiased implies that the prediction is equivalent to the

expected value of the response even for a finite data set.

This is more restrictive than the case of consistency where

the predictor only tends to the expected value of the

response as the sample size approaches infinity. While many

of the OLS assumptions are rather subtle (Kendall & Stuart,

1967, Chapter 28; Sprent, 1969) there are two significant

assumptions that we suggest are often not valid when

calibrating remote sensing models (Cheng & Van Ness,

1999, pp. 70–71):

A1. The measurement errors of the regression model are

random variables that are independent of both the regressors

and each other.

A2. Data used to fit the regression line are independent and

identically distributed normal random variables representa-

tive of the population over which prediction of the response

variable is required.

The first assumption holds if the data are acquired without

systematic measurement errors or if the second assumption

holds and transformations are applied to the data to render the

measurement errors uncorrelated with the observations. The

second assumption is likely more restrictive since it implies

that all the data are taken from the same underlying joint
normal distribution. There are two problems with this latter

assumption not commonly addressed in the remote sensing

literature. Firstly, outliers in the sampling distribution relative

to the population of interest will result in biased estimates of

model parameters and hence biases in prediction of subse-

quent responses. Rigorous outlier detection and treatment of

measurement errors in both regressors and response variables

has only been performed in a few notable studies surveyed in

the next section. Secondly, in many cases, data used to

calibrate linear prediction models are either randomly

selected from a population having a considerable range to

the point that a joint normal distribution is not representative

of the sampling distribution or are selected to span a range of

values of regressor or response (e.g. stratified sampling). We

shall provide both theoretical and empirical arguments that

OLS regression is biased in these cases. Further, we shall

show that there are other unbiased estimators in these cases.

1.3.2. Regression approaches that consider measurement

errors

Only a few studies have considered the problem of errors

in both regressors and response variables. There are two

cases that are typically considered: errors due to systematic

biases in measurement or theory and random errors in

observations due to noise in measurement methods or

collocation problems.

Systematic biases in measurements of regressors and

response variables are often treated by calibration proce-

dures. A typical example is the application of atmospheric

correction to reduce temporal or spatial variability in

vegetation indices (Carlson & Ripley, 1997; Song et al.,

2001). Reducing the impact of location errors on regression

estimators has also been treated in a rigorous fashion

(Salvador, 1999). However, careful experimental design

together with adequate calibration can reduce both of these

error sources while still leaving a large random error

component (Butson & Fernandes, 2004).

Random errors in both response and regressors have only

been considered in a few articles reviewed. One approach

has been to apply robust regressions that provide unbiased

estimates of regression parameters in the face of either

systematic or random errors (Rousseuw & Leroy, 1987).

However, most of the robust estimators assume that random

errors are due to measurement errors alone and are not also

due to equation errors corresponding to a lack of fit to the

chosen linear model even if there were no measurement

errors. Therefore, they may not be appropriate where the

amount of natural variability acceptable in observations is

large relative to measurement errors and no clear cloud of

outliers are present in the data. Furthermore, efficient con-

fidence intervals of prediction are difficult to define for most

robust regression approaches. One exception is the family of

R-Estimators based on rank-ordered statistics (Huber, 1996).

For example, Curran and Hay (1986), hereafter cited as

CH86, apply Bartlett’s method (Bartlett, 1949) to estimate

Leaf Area Index (LAI) given the Simple Ratio (SR)
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vegetation index. Here, LAI is defined as half the total green

foliage surface area per unit ground area projected on the

local horizontal datum (Fernandes et al., 2003). The SR

(Jordan, 1969) is defined as the ratio of near-infrared to red

directional hemispherical reflectance under a standardized

illumination and view geometry (usually clear sky, nadir

view).

CH86 describe a parametric regression (termed bleast
squares by error estimatesQ, LSE) that considers measurement

errors in both regressor and response variables. Davis et al.

(1987) apply another parametric regression based on weight-

ing residuals by measurement uncertainties (York, 1966).

Murray (1994) used data from CH86 to show that York’s

method and two other parametric regressions that incorporate

measurement errors (Ogren & Norton, 1992; Press et al.,

1992) are equivalent to the breduced major axisQ (RMA) fit

(CH86) when variances are constant with response and

regressor levels. None of the fits tested by Murray (1994)

distinguish between measurement error and intrinsic varia-

bility. Here, intrinsic variability is defined as the variation in

the noise free data set that deviates from the exact linear

model. Empirical calibration of remote sensing models may

involve substantial intrinsic variability that result in devia-

tions from assumption A2. As CH86 demonstrate, their LSE

regression differs from the RMA regression because of the

large amount of intrinsic variability in their data. Cohen et al.

(2003) argue that Geometric Mean (GM) regression (they

label it RMA but we use the conventional term as in Sokal &

Rohlf, 1981) is suitable for calibrating remote sensing models

in the absence of information on measurement errors. They

state that, bBesides making no assumptions about errors in X

and Y, RMA makes no assumptions about dependency.Q
This article augments CH86 by:

i. correcting the parametric structural regression solution

documented in Curran and Hay (1986) to give the

appropriate consistent parametric linear regression

solution based on the modified least squares (MLS)

approach;

ii. identifying consistent parametric regression solutions

applicable to problems where the data are acquired

due to a stratified sampling scheme or do not fit a

bivariate normal distribution.

iii. introducing the Theil–Sen (Sen, 1968; Theil, 1950)

regression to the remote sensing community as an

extension of Bartlett’s method and providing analyt-

ical prediction confidence intervals for the Theil–Sen

(TS) regression;

iv. comparing the Theil–Sen robust linear regression

solution to OLS, LSE and GM regression over

selected data sets.

The first three objectives are addressed in a theoretical

manner (Section 2) while the last objective is addressed

using three case studies dealing with estimating LAI given

the SR index (Section 3).
2. Theory

The mathematical basis of this section was originally

drafted after ideas from Kendall and Stuart (1967) (hereafter

KS67) but then revised to follow the style and updated

concepts in Cheng and Van Ness (1999, hereafter CV99)

based on the suggestions of one of the reviewers. The reader

is encouraged to read both references since we have been

brief in our treatment of the theory.

This section first defines the general problem of linear

prediction that we address in this paper. The important

distinction between functional and structural prediction

problems as special cases of the ultra-structural prediction

problem is introduced. The ultra-structural problem occurs,

for example, when the data are sampled using a stratified

random sampling scheme. For example, field sites could be

pre-selected to span a range of a priori estimates of LAI

based on land cover or forest survey data but the actual plots

within each interval in this range were randomly selected.

There are two special (extreme) cases of the ultra-structural

problem: the structural regression problem and the func-

tional regression problem. A regression method that is

unbiased or consistent for the ultra-structural problem will

also be unbiased or consistent for the structural and

functional problems. The reverse is not necessarily true

although there may be special cases, such as data that arise

from a uniformly distributed population where other

regression models will be consistent under stratified

sampling. The structural regression problem corresponds

to the case where data is randomly and independently

sampled from a stationary underlying distribution. For

example, the data could be sampled from one field with

uniform growing conditions. The functional regression

problem corresponds to the case where the data are sampled

without randomization. For example, one could identify a

set of target fields growing under various treatments that a

priori should produce different LAI at a given sampling

date. These terms are specific to linear estimation and

prediction and should not be confused by other common

statistical uses of the terms. For example, dfunctionalT is

also often used to imply a functional equation that

represents a physical law or a data transformation.

This section reports on consistent parametric solutions

(modified least squares, MLS) to each of these three

regression problems. The properties of other parametric

solutions, such as GM and LSE, are also discussed in terms

of consistency. Finally, a nonparametric (TS) solution to

each of the three regression problems is also provided.

2.1. The general linear prediction problem

This section describes the problem of estimating an

unobserved response g0 (e.g. LAI) given both a calibration

data set of noisy data {x,y}corresponding to noise free

actual values {ng,} (e.g. SR and LAI measurements) and

either existing or new noisy observation x0 (SR of a new
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site) using a linear model. Using the terminology of CV99

(1999)(p. 6.) this problem corresponds to the linear ultra-

structural regression problem with equation error.

Mathematically, the ultra-structural problem is repre-

sented as:

P1: Find E g0jx0; x; yf g
� �

where the underlying noise free

data is linearly related together with some level of equation

error, qi, as

gi; j ¼ b0 þ b1ni; j þ qi i ¼ 1; . . . ; n j ¼ 1; . . . ; r; ð1Þ

where n corresponds to the number of levels of the regressor

sampled and r corresponds to the number of samples taken

for that level and data corresponding to observations {x,y}

with corresponding measurement errors {d,e}:

xi; j ¼ ni; j þ di; j yi; j ¼ gi; j þ ei; j: ð2Þ

The following assumptions are also made regarding the

nature of the observations and the errors.

A3. The regressors are each assumed to be independent and

identically distributed (IID) random variables with the same

variance (the notation IID(a,b) implies an IID random

variable with mean a and variance b):

Eðni; jÞfIIDðli; r
2Þ: ð3Þ

This assumption assumes an underlying model for

variability at each level of the regressor and does not

necessarily imply that the actual sampling was performed

with replication at each level.

A4. The equation and measurement errors are assumed to

have zero mean and constant variance:

E dið Þ ¼ E e j

� �
¼ E qj

� �
¼ 0 var dið Þ ¼ r2

d

var e j

� �
¼ r2

e var qið Þ ¼ r2
q 8i: ð4Þ

A5. The measurement and equation errors are assumed to be

uncorrelated both between observations and between error

terms.

Assumption A3 is the critical component that distin-

guishes the ultra-structural problem from purely functional

and purely structural problems.

The functional and structural regression problems are

commonly discussed in the regression literature (e.g. KS67

Chapter 28). Structural regression corresponds to the ultra-

structural problem with assumption Assumption A3

replaced with the assumption that:

A6. the regressors are IID random variables and independ-

ent (not just uncorrelated) with the errors, i.e.

E ni; j
� �

fIID l; r2
� �

ð5Þ

The requirement for independence of errors is difficult to

support unless the underlying population is normally
distributed. In this case, the only additional assumption is

that the errors are uncorrelated with the observations.

Functional regression corresponds to the ultra-structural

problem with Assumption A3 replaced by the assumption

that:

A7. the regressors are unknown constants ni.

There is no clear rule to determine when a problem

transitions from purely functional to ultra-structural to

purely structural (see for example CV99, p. 88; Carroll et

al., 1995, p. 6). In general, the functional and ultra-structural

problems arise because each new observation brings with it

an additional unknown (li). This is in contrast to the

structural problem where the sampling distribution of new

observations are completely specified by a few parameters.

Fortunately, as we shall see in the next section consistent

solutions to the functional and ultra-structural regression

problems are identical and they also converge, although

sometimes in the large sample limit, to the unbiased

estimate when faced with structural regression problems.

2.2. Parametric solutions to the general linear regression

problem

For brevity, we discuss the known solutions and their

assumptions with reference to equations provided in

Appendix A. The reader is encouraged to read the indicated

references for further details.

2.2.1. Structural regression

Under the structural regression assumptions (A1–A6)

and the additional assumption that,

A8. The regressors {n} are normally distributed,

An unbiased maximum likelihood solution of the

structural regression problem corresponds to the OLS

estimators for the regression of y on x. (CV99, p.12). In

other words, OLS gives the correct answer in this case.

However, contrary to what is somewhat common

practice, this predictor should not be directly inverted if

one wishes to predict a later value of n given an

observed y. Rather, the OLS estimator for the regression

of x on y should be used. If the underlying distribution

is not normal there is no unbiased or consistent linear

predictor although the OLS solution is still the minimum

mean squared error solution (CV99, p. 70). If the data

diverge from normality it is also possible that the

problem is really an ultra-structural or functional regres-

sion problem or there are substantial outliers in the data

or both.

2.2.2. Functional and ultra-structural regression

The OLS predictor is biased for the functional and

ultra-structural models (CV99, p. 71) since the assumption

of a bivariate normal data distribution is no longer

guaranteed. As argued by CV99 (p. 80) the functional
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and ultra-structural problems cannot be directly solved

without additional assumptions since each regressor

observation, xi,j, brings with it an additional underlying

unknown li. Consistent maximum likelihood solutions do

not exist for this problem (Table 2.2 in CV99). In fact, the

commonly used GM regression corresponds to an incon-

sistent and hence biased solution (CV99, p. 20–22,) and

does not correspond to the maxima of the log likelihood

function that describes the functional regression problem.

CV99 (p. 44) states:

bthe GM estimate is neither consistent nor does it possess

desirable statistical properties. We do not recommend its use

for the ME [Measurement Error] model.Q

Additonally, orthogonal regression solutions of which the

LSE method is a simple case are also inconsistent since they

do not include the equation error term (CV99, p. 89).

Fortunately, consistent solutions to the ultra-structural

equation error regression problem can be found by

optimizing criteria other than maximum likelihood. These

solutions will necessarily also satisfy the structural and

functional equation error regression problems as they are

special cases of the ultra-structural problem. CV99 discuss

three general approaches to the solution: higher order

moments, modified least squares (MLS), and grouping

methods (including TS).

If the underlying regressors are not normal (A8 does

not hold) then one can use the method of higher order

moments to arrive at unbiased predictors (CV99, p. 120).

However, this method requires estimation of third and

fourth order moments and thus requires both large sample

sets for precise estimates of these moments while also being

highly susceptible to biases due to outliers. For example,

CV99 (p. 128) show a typical problem where the method of

higher order moments results in slope estimators with

approximately 44 times the variance than alternative

approaches.

The MLS method provides a minimum root mean

squared error (RMSE) unbiased predictor of the true,

measurement error free, response variable (CV99, p. 84)

given a priori knowledge of either both measurement errors

(r2
d,r

2
e ), the measurement error of the response (r2

d) or

the intercept (b0). Appendix A summarizes the MLS

predictors and their confidence intervals. It should be noted

that there is no consistent (and unbiased) estimator if only

r2
e is known since the equation error must still be separated

from the error in measuring the response variable. All of the

MLS regressions are based on estimates of sample variances

and covariances and are thus subject to bias in the presence

of even a single outlier. The use of robust estimates of these

variances and covariances is discussed in (CV99, p. 221)

but the properties of the predictor based on these robust

estimators are currently not well known. MLS provides the

most efficient prediction confidence intervals in a minimum

mean squared error sense of any linear predictor conditional

on the known a priori data. MLS is equivalent to the
unbiased OLS method in the limit when the measurement

error of the regressor tends to zero. Hence, the MLS

prediction also tends to the maximum likelihood regression

solution in this case.

In many cases a priori knowledge is lacking regarding

measurement errors or intercepts required for MLS. An

alternate constraint on the ultra-structural regression prob-

lem is specification of the rank-order of groups of

observations such as the TS approach. This approach is

feasible if an upper bound on the measurement error can be

estimated such that only data that are pair wise separated by

more than this bound are ranked. For example, if we can

assume that the measurement error in LAI is 1 unit and 1

unit in the simple ratio index then we could state that a site

with an LAI of 4 and simple ratio of 6 has a higher rank than

a site with an LAI of 2 and a simple ratio of 4. Theil (1950)

developed a grouping estimator for the predictor slope, b1,

based on the assumption that the ranks are known. The slope

estimator corresponds to the median of the pair wise slopes

of all data points that meet the ranking criteria. The intercept

is then given by using the same form as the OLS estimator

but with the TS slope. Sen (1968) later extended this

estimator, now called Theil–Sen (TS) regression, to deal

with the presence of ties in the list of pairwise slopes (see

Appendix A).

Sen (1968) proved that TS regression is unbiased for the

functional regression model while CV99 (Theorem 4.2)

show that it is consistent for the purely structural

regression model. Peng and Xueqin Wang (2004) recently

proved TS regression is also consistent for the ultra-

structural model as long as the residuals between the

response and prediction form a continuous distribution.

This requirement is usually satisfied when measurements

are performed by the same instrument and the data follow

an underlying model that is close to linear. Perhaps more

importantly, the TS estimator is robust to up to 28.9%

outliers in the data (Theil, 1950) so that large deviations

from the equation error model or mistakes in the assumed

ranking of data can be tolerated to some extent.

One concern with a grouping method is the potential

increase in the width of prediction confidence intervals

since optimality criteria such as maximum likelihood or

minimum mean square error are not directly applied. Peng

and Xueqin Wang (2004) report on the asymptotic relative

efficiency (A.R.E.) of the slope estimated by the Theil–Sen

method for cases where the slope estimate based on

unbiased minimum mean square error solutions are known.

The A.R.E. is the ratio of the variance of the minimum

RMSE estimator of the regression slope to the variance of

the Theil–Sen regression slope. In summary, the A.R.E is

always better than 86.4%, approaches 95.5% for normally

distributed data (OLS), and will exceed 100% (i.e. TS is

more efficient) for data that has large tails such as double

exponential or Cauchy distributions. Appendix A provides

analytical formulae for prediction confidence intervals of

the TS method.
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3. Application

3.1. Problem of LAI mapping and why empirical methods

are useful

LAI is a quantitative measure of foliage quantity and

status (e.g. Sellers et al., 1994.) and is a fundamental input

to numerical models of carbon, water and energy cycles

(Monteith & Unsworth, 1990; Running & Coughlan,

1988). There have been numerous previous studies relating

LAI to broad-band spectral measurements from satellites

(e.g. Chen, 1996; Hall et al., 1995). Physically based

models relating canopy reflectance to LAI have had some

success and are operationally used for mapping global LAI

patterns (Myneni et al., 2002). However, nadir spectral

measurements tend to saturate at moderate levels of LAI

so that retrieval uncertainty for physical models can be

large unless a priori information is applied (Knyazikhin et
Table 1

Descriptions of data sets used in case studies

Data set identification

Data set Data Set 1 Data

Description Synthetic, variable measurement and

intrinsic error

Low

Reference Sellers 1985 Curr

Cover Typical agricultural crop Sem

Location Not applicable Latk

Sampling domain

Spatial extent Not applicable 5km

Temporal extent Not applicable Sept

Sampling design

Stratification N=51 Functional, N=74 structural,

Single population

N=2

Separation Not applicable With

In situ sampling

Method Specified Spec

Spatial Support Not applicable 2m	
Measurement error Various treatments 0.17

Sample mean Not applicable 1.57

Sample stdev. Not applicable 0.68

Sample max 3.4 2.97

Sample min 0 0=0

Remote sampling

Method 2-stream radiative transfer model Milt

Spatial support infinite ~1m

Measurement error Various treatments 0.10

Sample mean 3 3.25

Sample Stdev. Not applicable 0.90

Sample max 5 4.87

Sample min 1 1.45

Data Set 3 includes three columns when reporting in situ and remote summary stati

sub-sets.
al., 1998). In contrast, empirical models based on

regressions between in situ LAI and remote satellite

measurements allow LAI estimates to be constrained by

the sampling distribution (Chen & Cihlar, 1995). As such,

ecophysiological constraints on LAI are incorporated to

make predictions past the point of saturation in nadir

reflectance.

The purpose of this section is to evaluate the impact of

departures from assumptions in linear regression models for

empirical estimation of LAI given simple spectral vegeta-

tion indices.

3.2. Summary of three data sets

Three data sets are used in our study. All three data sets

consist of ordered pairs of observed LAI and SR. We chose

data sets using the SR, since it is available from a wide

variety of sensors and does not require site-specific
Set 2 Data Set 3

measurement error; local High measurement error; national

an & Hay 1986 Chen et al., 2002

i-natural grassland Typical conifer stands

hill Dale, Derbyshire, UK Canada south of treeline

2 26x106km2

ember 08–15, 1982 In situ: summer 1998 Remote:

summer 1998

6, likely random. Stratified by biome type and across 6

Landsat TM frames. Sampled from

local permanent sample plots.

Agriculture only in Ottawa region.

in single pasture. 99 standsN1km

ified destructive Optical gap fraction

2m 100 m square

20%

4.36

2.58

10.32

. 0.38

on radiometer Landsat TM 5+6S

–2m ~100m square

12%

7.61

3.59

15.52

2.45

stics corresponding, from left to right, to confiner, deciduous and agriculture
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parameters. Nevertheless, our results could be extended to

other vegetation indices. For brevity, we summarise the data

sets in Table 1. This section discusses aspects of each data

set of interest to the objectives of our study.

3.2.1. Simulated problem

A synthetic data set was used to produce a set of

simulated noisy measurements using the same underlying

physical process relating LAI and SR but within two

different sampling schemes to represent both structural and

functional problems. The data sets was generated based on

a two stream radiative transfer model (Sellers, 1985) to

reproduce the curve of SR versus LAI, shown in Fig. 1,

for a crop canopy of spherically distributed leaves. A soil

single scattering albedo of 0.2 in both visible and NIR and

a leaf single scattering albedo of 0.2 and 0.95 in visible

and NIR, respectively, were used. These parameters

produced an asymptotic SR of 6.5 at infinite LAI. Only

data with the range of SR 1 and SR 5 were used to

minimize the impact of the asymptotic non-linearity on the

comparisons.

For the structural problem, a total of 74 noise free points

were sampled based on a normal SR distribution with mean

3 and variance 1.5. For the functional regression problem, a

total of 51 noise free points were sampled at a regular SR

interval of 0.1 from SR 1 to SR 6. Fig. 1 shows the noise

free sample for both problems super-imposed on the

underlying noise-free radiative transfer model curve. Addi-

tive zero mean, constant variance normally distributed noise

was applied to each data set. Noise levels corresponding to

variances of 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 units in LAI and
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

SR

LA
I

lai Sellers model lai structurallai functional

Fig. 1. Modelled relationships between LAI and SR for a noise free

synthetic data set. The modelled relationship was generated using the 2-

stream turbid media radiative transfer model of Sellers (1985) for a typical

broadleaf crop canopy. Only values in the linear range between SR of 1 and

5 were used. The sample sets for functional and structural regression

problems are indicated as hollow and filled circles, respectively.
SR were applied. Each noisy data set was replicated 100

times using a randomly selected noise process with the same

underlying noise free data. OLS (with both SR and LAI as

regressors), GM, MLS and TS regression methods were

applied to the noise free and noisy data sets.

3.2.2. Structural regression problem (Data Set 2)

CH86 provide a set of 26 points of LAI measured by

destructive sampling within a single field together with the

SR derived from spatially co-incident tripod mounted

radiometer measurements. Each plot was a 2 m square of

semi-natural grassland. No information was provided on

view and illumination geometry or calibration to apparent

reflectance at surface. However, it is likely atmospheric

correction errors are negligible and the target is likely close

to Lambertian so illumination geometry should not be a

significant factor as nadir view was used. Additive measure-

ment errors of rd=0.10 and re=0.17 are specified in CH86.

These errors are less than 3% of the observed range in SR

and 6% of the observed range in LAI. The problem can

therefore be assumed to be a structural regression problem

with a relatively normal distribution of regressors and low

measurement errors.

3.2.3. Ultra-structural regression problem (Data Set 3)

This data set, taken from, Chen et al. (2002), hereafter

referred to as C02, consists of in-situ LAI measurements

based on optical gap fraction methods and SR derived from

Landsat 5 Thematic Mapper atmospherically corrected

reflectance taken across Canada during mid-growing season

conditions. Seven World Reference System 2 frames,

corresponding to Landsat 5 Thematic Mapper image

regions, were sampled across Canada. These data form the

basis of linear regression algorithms used to generate initial

Canada-wide LAI estimates (C02). Butson and Fernandes

(2004) found measurement errors on the order of 10% for

the SR and Chen and Cihlar, (1995) suggest one standard

deviation errors on the order of at least 20% in LAI. The in-

situ LAI sites within and between Landsat scenes were

stratified as much as possible to span the observed range in

LAI and land cover type with a few (~3) replicates

performed at each category in the stratification. This data

set therefore corresponds to an ultra-structural regression

problem with likely a greater affinity to functional regres-

sion due to the strong stratification of plots along perceived

vegetation density gradients.

3.3. Results

3.3.1. Synthetic data set (Data Set 1)

We first focus on the case where the response, LAI, has

no measurement error while the regressor, SR, has high

measurement error to illustrate the pitfalls of OLS. Fig. 2

illustrates sample model fits for Data Set 1 with high levels

of measurement error (r2
d=1.2 units) in SR and no

measurement error in LAI. For the structural regression
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(1985) radiative transfer model was used to define the underlying

population of LAI and SR values.
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problem, the theoretically unbiased linear solution corre-

sponds to predict LAI from the OLS regression of SR on

LAI. As expected, both the MLS and TS regressions closely

match this unbiased estimate. The GM regression is also

very close to the unbiased OLS solution with a slight

overestimate at mid-level SR values. In contrast, the OLS

regression of LAI on SR differs substantially for all the

other solutions. This example clearly indicates the danger of

blindly using OLS regressions. This example also demon-

strates a case where the GM regression is comparable to the

unbiased approached. However, as shown in the functional

regression example in the second panel of Fig. 2, the GM

Regression can be biased when the sampling approach

differs from the normal structural model. In this functional

counterpart to the structural problem just discussed, the GM

regression lies approximately half way in between the two

OLS regressions while the MLS and TS functional

regressions closely match the OLS of SR on LAI.

Fig. 3 summarizes RMSE results for 100 repetitions of

regression fits for both structural and functional regressions

at a range of noise levels. The MLS regression is
mathematically equivalent to OLS regressions in the case

of noise in one variable only and to LSE in the case of equal

noise in both variables so it is not separately labeled in the

charts provided. Generally speaking all methods perform

similarly at low noise levels (1 sigma V 0.2). The difference

in RMSE increases between the two OLS methods as

increasing additive noise is applied to only one of LAI or

SR. This is expected since these methods have opposite

hypotheses regarding measurement errors. The OLS of SR

on LAI assumes no measurement errors in LAI and vice

versa for the OLS of LAI on SR. With the structural

regression trials, the OLS methods are the minimum mean

squared error unbiased estimates when their assumptions

hold. This theoretical aspect is reflected in that they

empirically produce the lowest RMSE for the structural

problems where only one of LAI or SR has measurement

error. Additionally, the TS method closely approximates the

performance of the minimum RMSE OLS method in

accordance with the theoretical property that the TS solution

approaches an OLS solution for structural regression

problems. In contrast, GM regression only exhibits a

consistent minimum RMSE with equal additive measure-

ment errors to both LAI and SR. The fact that the GM

approach actually attains a minimum RMSE is partially a

co-incidence due to the fact that the ratio of variances of

noise free LAI and SR (1.18) is approximately the same as

the ratio of variance of noise processes (set at 1). GM

approach is equivalent to the MLS approach when the ratio

of sample variances of the data equals the ratio of the

measurement error variances (Draper & Smith, 1981, p 91).

We expect that GM will not perform as well with data sets

where these two ratios are not close. At noise levels of 0.6 or

larger, TS consistently placed second behind GM regression

in terms of minimum RMSE for the structural problem with

equal noise in LAI and SR. The LSE method usually fell

behind the TS and optimum OLS approaches in terms of

minimum RMSE for estimating the true, measurement error

free, response variable.

We expected the OLS methods to fare worse with the

functional regression trials since, according to theory, they

are no longer unbiased predictors of the underlying true

LAI. In fact, the best OLS approach for the structural

regression case of error in only one variable was also the

best approach for the corresponding functional problem.

This may in part be due to the fact that the sampling

distribution used for our synthetic functional regression

problem could also be parameterized as a two parameter

uniform distribution and hence could be interpreted as a

non-normal structural regression problem. As mentioned

previously the OLS methods also minimize RMSE for non-

normal structural regressions. In hindsight, a multimodal

sampling scheme could have been applied to demonstrate a

very extreme functional regression problem. However, it

should also be emphasized that the good performance of the

OLS methods only applies to the synthetic trials with error

in one variable. The error in both variable trials clearly
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shows that OLS is not optimal in the common case where

there is measurement error in both variables.

The TS approach typically followed the minimum RMSE

OLS approach for trials with error in only one variable and
was usually close to the GM regression in terms of the

minimum RMSE method for errors in both LAI and SR

trials. The exception being with the highest levels of noise

where the TS approach was superior to all others. In this
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case, the noise process could be interpreted as producing

outliers from the assumed underlying linear model. The TS

robustness property likely resulted in its superior perform-

ance. The MLS estimator typically fell in the middle of the

other methods in terms of minimum RMSE.

3.3.2. Additive measurement errors (Data Set 2)

Fig. 4 compares regression estimators assuming the

additive noise model of CH86. A natural log transform

was applied to the observed SR regressors to improve the

linearity of the relationship. Fig. 4 clearly demonstrates

that OLS will give different results depending on the

specification of the response and regressor. The relative

differences between the two OLS estimates are on

average 15% with differences over 50% for LAI below

2. These differences can have detrimental impacts on

large area LAI estimates since they apply to the mean

estimated LAI for a given SR and therefore cannot be

expected to cancel out due to intrinsic variability (i.e.

variance in observations not related to measurement

errors). In this case, the measurement errors in SR are

approximately three times smaller than those in LAI.

Hence, the OLS of LAI on SR should provide the

minimum RMSE estimate assuming this regression prob-

lem is structural and will also be unbiased to the extent

the noise free data is normally distributed.
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Fig. 4. Comparison of TS, OLS of LAI on SR, OLS of SR on LAI and LSE

regressions for estimation of LAI given SR with the CH86 data set. The

fitted MLS regression was virtually identical to the OLS of SR on LAI and

is not shown on the current figure. Prediction confidence intervals at the

67.5% level are included for the TS regression.
The TS regression closely matches the OLS of LAI on

SR as expected theoretically and as seen in the structural

regression trials in Data Set 1. The TS prediction

confidence intervals are quite large due to the relatively

small range of the data in the SR axis relative to the

scatter of data in the LAI axis. Both the LSE and GM

regression lines fall close to the mid-point of the optimal

OLS of LAI on SR and the worst case error of the OLS

of SR on LAI. The MLS structural regression solution

was not shown since it essentially coincided with the

OLS of LAI on SR due to the substantially larger LAI

measurement errors.

3.3.3. Large area domain with substantial variability in LAI

and SR (Data Set 3)

In this example we are faced with the difficult task of

using pooled data that is exposed to substantial intrinsic

variability and measurement error. As such, one should

expect large confidence intervals. The goal therefore is to

develop unbiased regression fits with the hope that

random errors will cancel over large samples. Fig. 5

compares GM, MLS and TS regressions (with 67.5%

confidence intervals) applied to SR and LAI values,

transformed after applying a logarithmic transform on SR

and a 4th root transform on LAI. These transformations

were selected as they provided homeoscedastic regression

residuals. OLS regressions of SR on LAI using the linear

model of Baret and Guyot (1991), as published in C02 is

included for comparison.

The MLS and TS lines and their confidence intervals

agree very closely in all three cases. This result is in part due

to the large amount of random variation induced by

measurement error and in part due to the mixing of

measurements from different stands to increase intrinsic

variability. The large confidence intervals reflect this high

level of variability and measurement error relative to the

range of the data. Furthermore, the large cloud of points at a

SR of 7 for conifers is not characteristic of the rest of the

data and suggests exceptional measurement errors (possibly

outliers). Examination of the data found that they were

acquired using insufficient spatial sampling (Fernandes et

al., 2003). Clearly, in developing regression to predict LAI

one should sample over the entire range of possible

observed LAI. As with the current data set, stratified

sampling across a range of LAI is often implemented to

reduce field measurement demands. This sort of stratifica-

tion may reduce prediction errors but one should always

map the residuals in LAI estimates to determine the extent to

which they contribute to bias errors due versus spatially

random errors.

The OLS fit based on the physically based equation

taken from C02 differs substantially in comparison to MLS

and TS regressions. For example, the fit from C02 reaches

an LAI of 0 at a SR of 2.71 while the other regressions

predict an LAI of 1. C02 argue that this is due to the SR

ratio of background without overstory foliage. It is evident
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from the data that SR may vary substantially at low LAI

and that specifying a single background SR may bias the

functional regression fit at other levels of LAI. Examina-

tion of Fig. 5 shows a difference in estimated LAI of 2

units at a SR of 15 between OLS and either MLS or TS

regressions. Given that the MLS and TS regressions are

based on a large number of high LAI values it may be

possible that this difference is due to biases in the OLS

regression. There is insufficient data to test this hypothesis

and in the case of this data set the difference is small in

relative terms.

The GM regression line also differs from the para-

metric and TS regression lines. The OLS of LAI on SR

(not shown) is close to the parametric fit given that LAI

measurement errors were estimated to be twice those of

the SR measurement errors. This suggests that, as with

data set 2, GM regression selects a predictor close to the

bisector of the two OLS line fits. Given the lack of

theoretical arguments to support the consistency of the

GM regression and the strong arguments in support of the

consistency of the parametric and TS regressions we

suggest that the GM regression is likely biased in this

example.
4. Conclusions

Linear regression is a widespread tool for prediction of

in situ quantities given remote sensing measurements. The

regression problem is in general an ultra-structural error in
equation problem given that data used to produce the

predictor are usually sampled with some sort of strat-

ification and that exact linearity is not expected a priori.

Two extreme cases of this ultra-structural model are the

functional and structural models. The structural model

assumes that all of the remote sensing measurements are

drawn from a population that can be statistically described

using a few parameters (e.g. random sampling of similar

land surfaces). The functional model, in contrast, assumes

each remotely sensed observation has a unique expected

value that cannot be inferred given knowledge of other

observations without some sort of linear or non-linear

model (e.g. stratified sampling). Thus each new observa-

tion brings with it a new unknown to the regression

problem.

Theoretical results based largely on KS67 and CV99

were provided for the minimum mean square error

regression for both structural and functional models. For

structural problems, the unbiased parametric predictor

corresponds to the OLS with the quantity being predicted

as the response variable. For functional problems, the

MLS method provided an unbiased regression but

requires additional information related to either measure-

ment errors or the intercept. This TS regression is also

unbiased for functional models and converges on the

unbiased minimum mean squared error OLS solution for

structural models. Significantly the TS predictor requires

only knowledge of an upper bound on measurement

errors to allow an accurate ranking of the data. Addi-

tionally, the TS method is robust to 29.8% outliers in the

data. This robustness also applies to errors in ranking of

data so that the knowledge of measurement errors need

only be correct for ~70% of the data. Approximate

confidence intervals of prediction of the TS and structural

approaches were given. The TS estimator allows for

relatively robust regressions while providing analytical

confidence intervals. TS may result in slightly lower

asymptotic confidence intervals compared to MLS. If this

is a concern then one could should both the MLS and TS

regression when measurement errors are known, as

differences between these estimators can be indicative of

violations in the more restrictive MLS regression

assumptions.

Three test data sets of measured LAI and SR were used

to explore the performance of the parametric and TS

approaches as well as the GM and LSE methods advocated

elsewhere. A synthetic data set showed that the TS

approach was usually the minimum RMSE method or

ranked close to the minimum method. The OLS approach

was the RMSE method only with errors in one rather than

both variables. A second data set corresponding to a

structural regression problem again showed that the para-

metric and TS approaches were similar to the optimal OLS

approach. However, the GM and LSE approaches fell in

between the two OLS regression lines and were likely

biased predictors. The third data set showed that both
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parametric and TS regressions tend to arrive at similar

solutions for ultra-structural problems. This is in contrast

to the OLS, GM and LSE methods that, theoretically,

should be biased.

Although remote sensing technology and theory have

advanced significantly since KS67 and CH86, the

majority of the studies we surveyed have been using

potentially biased OLS linear regression estimators. Both

OLS and GM (including RMA as a special case) are sub-

optimal estimators of linear structural relationships and

should not be used without very strong justification.

Rather, the Theil–Sen estimator should be considered for

univariate linear regression. MLS regression is a useful

back-up solution when data are known to be outlier free

and a priori information on measurement errors or the

intercept are known. At a minimum, researchers consid-

ering linear regression should identify the potential

uncertainty in predictors based on the extreme cases of

OLS. Finally, we caution that we have only addressed

some of the issues related to regression in this paper. Our

study did not consider the spatial pattern of predictions

and their residuals or the appropriateness of the sample

population for the domain over which the regressions

were applied. We expect that users of regression in

remote sensing will continue to pay close attention to

these aspects.
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Table A1

Linear functional relation parameter estimates

Known parameter No Equation error Equation error

k b
~
0,b
~
1,1,r~d ,1

2 Unidentified

r2
e , r2

d b
~
0,b
~
1,1 b

~
0,b
~
1,2,r~q

2

r2
d b

~
0,b
~
1,2,r~e ,1
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0,b
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1,2,r~e,1

2

r2
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0,b
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1,3,r~d ,2

2 Unidentified

b0 b
~
1,4,r~d ,3

2 ,r~d ,2
2 b

~
0,b
~
1,4,r~e ,2

2

Appendix A. Solutions to the general linear regression

problem

This appendix provides formulae for unbiased solutions

to the general linear regression problem with both measure-

ment errors and equation errors as defined in Eqs. (1–5) and

their associated assumptions. The tilde overbar is used to

denote estimators based on sampled data.

A1. Structural regression problem

An unbiased maximum likelihood solution only exists if

the noise free regressors are normally distributed and the

measurement errors in response and regressors are inde-

pendent. In this case the solution is simply the appropriate

OLS predictor:

ĝg0 ¼ E g0jx0; x; yf gð Þ ¼ ãa0 þ ãa1x0 ðAI:1Þ

a
f
0 ¼ ȳy 
 a

f
1x̄x a

f
1 ¼ sxy=sxx: ðAI:2Þ
Here, sxy is the sample covariance and sxx the sample

variance of the regressor. The confidence intervals of the

OLS predictor are well known (KS67, p. 363).

We are not aware of a consistent linear regression

solution for non-normal structural regression problems.

However, the appropriate OLS solution is the minimum

RMSE solution for non-normal structural regression prob-

lems. We note also that the ultra-structural and functional

regressions cited in the next section are also consistent

predictors of the normal structural regression problem and

tend to the minimum RMSE estimator for non-normal

structural regression.

A2. Functional regression problem

When the assumptions required for a functional regres-

sion problem hold, an unbiased predictor is given by:

ĝg0 ¼ E g0jx0; x; yf gð Þ ¼
f
b0 þ

f
b1x0: ðAI:3Þ

Here b
~
0 and b

~
1are estimates of the parameters of the

linear functional relationship between n and g. Unbiased
estimates for these parameters can only be arrived at given

additional information.

A2.1. Parametric functional parameter estimates

Table A1 summarizes results from CV99 (pp. 54–55)

giving parametric minimum mean square unbiased estimates

of the parameters in Eq. (AI.3) for both the equation error and

no equation error cases. The slope estimate depends on the

type of a priori knowledge. These known parameters must be

specified a priori and strictly speaking not estimated;

although in practice they are usually estimated using ancillary

data. In some cases the problem is unidentified in that there is

no consistent or unbiased estimator that can be arrived at

without additional knowledge.
The various parameter estimates for the slope and

intercept are defined below:

f
b0 ¼ ȳy 


f
b1;:x̄x ðAI:4Þ

f
b1;1 ¼ syy 
 ksxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
syy
ksxx
� �

2

q
þ 4ks2xy

2sxy
ðAI:5Þ

f
b1;2 ¼ sxy= sxx 
 r2

d

��
ðAI:6Þ

f
b1;3 ¼ syy 
 r2

e

�
=sxy

�
ðAI:7Þ
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f
b1;4 ¼ ð ȳy 
 b0Þ=x̄x ðAI:8Þ

Here syy is the sample variance of the response. The

measurement error variance estimates indicated in Table A1

are given in CV99 (p. 55) and not included here for brevity.

Parametric regressions based on estimates in Table A1 and

Equation (AI.3) are also consistent predictors if the data

turns out to be from a normal structural model as they

coincide asymptotically with the unbiased OLS predictor

(CV99, p. 71).

KS67 (p. 389) gives the confidence interval of b̃1,1

estimated from Eq. (AI.5):

tan

�
tan
1

f
b1;1Fsin
1

�
2t

�
sxxsyy 
 s2xy

n
 2ð Þ
�
sxx
syy
� �

þ 4s2xy
	

0:5��

ðAI:9Þ

where t is the Student t statistic and n is the number of

samples in the data set. This confidence interval is exact for

structural relationships between response and regressor. A

more general version exists (CV99, p. 64) that applies to

structural and functional regression problems but our

experience is that it produces similar intervals to Eq.

(AI.9) for data with typical measurement error levels.

Different, asymptotic confidence intervals must be applied

for other cases where only one measurement error variance

or the slope is given:

Fzc=2
fr2

bn

1=2 ðAI:10Þ

where zc/2 is the 100(1-c/2) percentile of the standard

normal distribution and the variance of the slope is

estimated using

fr
2

b ¼
fr

2

d
fr 2

�fr
2

e
fr 2

d

þ
f
b

2

1

�
b
f

1;: þ
rfe
2rfd

2

rf4:
ðAI:11Þ

This estimator is only useful when the noise to signal

ratio given by
r̃r2

e r̃r
2
d

r̃r4 is small (CV99, p. 74).

The prediction confidence interval for subsequent

responses is then derived by shifting the data so the origin

coincides with x̄:

ĝg0f 
 tsyy
nþ 1ð Þ
n


 x2ĈCa1




þ tsyy
nþ 1ð Þ
n


 x2ĈCa1

þ
ðAI:12Þ

where Ĉa1

- and Ĉa1

+ are respectively the positive and negative

confidence intervals estimated by Eq. (AI.9) or (AI.10) for

the value of t specified.

A2.2. Rank based functional parameter estimates

A rank-based unbiased functional regression slope

estimate was given by Theil (1950) as the median of
pairwise slopes of the observations. Sen (1968) refined this

estimate to deal with the case of ties in the ranking:

b
f

1 ¼ median B
f
�

ðAI:13Þ

where

B
f ¼ median

�
bij

����bij ¼ yj 
 yi

xj 
 xi
; xi p xj; 1Vibjbn



ðAI:14Þ

and

b
f

0 ¼ ȳ
 b
f

1x̄
: ðAI:15Þ

Ideally, to estimate the confidence interval of the predictor

one would use the joint confidence interval of the slope and

intercept. A joint confidence interval for the slope and

intercept has not been derived (CV99, p. 120). The upper and

lower confidence interval for the slope parameter b1 from

the Theil–Sen estimator follows by application of the Mann–

Kendall (Kendall & Gibbons, 1990) statistic:

C
f
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þ ¼ b
f

1

�
0:5

�
N V þ t

18

�
n n
 1ð Þ 2nþ 5ð Þ

þ
Xq
p¼1

Tp Tp 
 1
� �

2Tp þ 5
� ��0:5
�

C
f

b1


 ¼ b
f

1

�
0:5

�
N V 
 t

18

�
n n
 1ð Þ 2nþ 5ð Þ

þ
Xq
p¼1

Tp Tp 
 1
� �

2Tp þ 5
� ��0:5
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AI:15

where __b
~
1 is the vector of estimated slopes sorted in ascending

order; N’ represents the index of the median value of __b
~
1; q is

the number of subsets of tied values in __b
~
1; Tp is the

cardinality of the pth sub-set of tied values; and rounding to

the nearest integer rank is applied.

This estimate assumes that the values of noise free

regressors, n, are sufficiently separated in comparison to

their measurement error r2
d that the xiTs used in the median

are in the same order as their counterpart, unobserved niTs.

A2.3. Ultrasctuctural regression problem

Both the parametric and TS regressions for the functional

model are also unbiased for the ultra-structural model and

tend asymptotically to the OLS regression solution when

provided with data taken from a structural regression

problem (CV99, p. 55 and pp. 117–118). This property of

the parametric and TS regression is especially attractive

since it does not require a priori knowledge of the type of

regression problem to arrive at unbiased estimators. The

price paid is in increased confidence intervals (i.e. decreased

efficiency) when using these estimators instead of the OLS

estimator for a true normal structural model.

There has been some criticism of the TS method when

faced with structural regression problems due to the
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assumption that the data are correctly ranked. CV99 (p.

118) argue that the data will not be correctly ranked when

there is a large number of samples taken from a normal

structural model when the measurement error r2
d is not

small. However, there is no a priori reason to use all

pairwise combinations of observations when constructing

the TS estimator. Censoring combinations that fall close

to each other will reduce the efficiency of the estimator

but as long as the censoring is based on a rule

independent of the data (e.g. enforcing a minimum

separation between xi’s used in pair wise slopes) the TS

will still remain unbiased. On the other hand, the TS

method requires only knowledge of an upper bound on

the measurement error rather than the exact ratio or

magnitude of measurement error typically needed for the

parametric functional methods.
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