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ABSTRACT –To monitor terrestrial surfaces, quantitative information  like Leaf Area Index (LAI) are retrieved 
from remote sensing data. Because of technology constraints the sensors currently used have coarse resolution. 
Characterizing spatial heterogeneity at coarse resolution is important to improve LAI estimates. The aim of this 
study is to propose a methodology to characterize spatial structure of remote sensing data. Variogram models are 
fitted for different variables (RED and NIR reflectance, NDVI vegetation index and LAI) for four contrasted 
landscapes (crop, pine forest, Mediterranean vegetation and tropical forest). The comparison of the variogram 
model parameters (sill, range, integral range) between landscapes allows to draw a typology of spatial 
heterogeneity.  Then spatial heterogeneity is related to scaling issue to emphasize the influence of resolution with 
application to the estimation of LAI.  

1  INTRODUCTION  

Terrestrial surfaces are observed frequently and 
globally by series of large swath sensors such as  
NOAA/AVHRR,VEGETATION, MERIS, MODIS, 
MISR and POLDER. To monitor phenological 
changes and dynamic processes such as primary 
production, studies have to be carried using high time 
frequency data. Because of technological constraints, 
these sensors are associated to coarse spatial 
resolution, i.e, in the resolution from few hundreds of 
meters up to few kilometers. However, at these scales, 
spatial heterogeneity may have a great influence on 
land surface characteristics estimation from remotely 
sensed data (Leaf Area Index: LAI, vegetation cover, 
canopy chlorophyll content…), particularly if the 
relationship between the considered variable and the 
radiometric data are non linear, which is the case for 
LAI. Indeed the transfer function used to derive LAI 
from remote sensing data (reflectance, NDVI) is 
generally built to be applied to homogeneous surface 
whereas the remote sensing measurement is a spatial 
average of radiative signals over the pixel. Applying 
such transfer functions at coarse resolution to derive 
LAI does not account for the subpixel variation and 
leads to error on retrieving quantitative information 
LAI. Therefore the spatial heterogeneity issue has to 
be  dealt  with the problem of scaling and the non 
linearity of the transfer function. 
 

 Depending on the kind of study, spatial 
heterogeneity can have different meanings. In this 
work, spatial heterogeneity is related to a quantitative 
information that characterizes the spatial structure of 

remote sensing data (vegetation description) for a 
given geographic domain (ie image). Spatial 
heterogeneity can be quantitatively characterized by 
different techniques. A first way consists in computing  
textural parameters (variance, covariance, skewness..) 
to characterize spatial data variation within an image 
(Haralick,1996). Different authors show that 
geostatistical theory (Cressie, 1991)  can be  applied to 
remote sensing image to describe data spatial variation 
by variogram function (Woodcock et al 1987, Jupp et 
al. 1988a, Jupp et al. 1988b, Woodcock et al 1988, 
Atkinson 1997, Milne et al. 1999, Treizt 2000, 
Beaufort 2000…). Fractal dimension (Mandelbrot, 
1983) was used to monitor spatial pattern change in 
multiscale analysis (De Cola 1989, Bian and Walsh 
1993, Bian 1997, Xia et al. 1997, Cao 1997…). More 
recently wavelet transform is used in multiresolution 
analysis (Ranchin and Wald, 1993).  However Chen 
(1999) underlines that contextural parameters (size and 
organization of the objects within the image) are more 
effective than textural parameter to describe the effect 
of spatial discontinuity on scaling. Moreover different 
studies characterize spatial heterogeneity with scaling 
issue. Bian (1997) uses fractal dimension to emphasize 
data aggregation influence on spatial pattern. Milne et 
al. (1999) used geostatistical theory  to monitor data 
regularization evolution with resolution. Spatial 
heterogeneity  is also studied as  an influence on  LAI 
error estimates at coarse resolution. Chen (1999) 
shows that the error estimates depends not only on the 
non linearity of the derivation algorithm but also on 
the mixed pixel spatial pattern organization. Friedl 
(1997) shows with a simulation study that the LAI 
error estimates results from the interaction between 
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spatial resolution of the sensor and the scale of spatial 
variation in the ground scene. 

 
This study consists in developing a 

methodology to characterize quantitatively spatial 
heterogeneity for different variables (reflectance or 
biophysical variable derived from remote sensing) for 
different landscapes. To this purpose, the study 
objectives are: 
 

1. describing spatial heterogeneity at high 
resolution (20m resolution) for different 
vegetation sites and variables  

2. analyzing scaling effect in relation with 
spatial heterogeneity 

3. observing heterogeneity influence on 
LAI error estimates at coarse resolution. 

2 STUDIED DATA  

2.1 Studied sites  

The data come from the VALERI database 
(http:\www.avignon.inra.fr\valeri, Baret et al. 2002). It 
consists in a network of sites used to validate large 
swath satellite biophysical products (including LAI).  
For each site, high resolution images (SPOT)  are 
available. Four SPOT images of 4 contrasted 
landscape are used. The size of each image is the 
same: 3km*3km and the SPOT pixel resolution is 
20m. Figure 1 shows the NDVI image at SPOT 
resolution for the different sites.  

2.2 Studied variables  

a) SPOT reflectances 
 
NIR and RED bands will be investigated. 

Moreover the NDVI index is computed: 
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The remote sensing data are not corrected from 
atmospheric effects, a cloud mask was applied only on 
Counami image, the acquisitions for the other sites 
being cloud free. 

 
b) Biophysical variable  
 
A LAI image of each site is performed by 

applying a semi-empirical expression (Baret and 
Guyot, 1991). The relationship is fitted on a learning 
data set composed of LAI variable and corresponding 
reflectance values. The data set was generated with 
SAIL radiative transfer model simulations (Weiss, 
2002)  for a wide range of simulations.   
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• Klai is the extinction coefficient 
• NDVI∞ is the asymptotic value of NDVI 

(corresponding to infinite LAI)  
• NDVI s is the  bare soil NDVI value  

 
For each variable (LAI, NDVI, RED, NIR)  and 

each site, different resolution images are computed by 
aggregating (arithmetic mean) the 20m resolution 
image. 

3  METHODOLOGY 

3.1 Geostatistical tools 

Geostatistics (Cressie 1991, Wackernagel 1995) 
allow to characterize spatial distributions of one or 
more variables. Variable spatial distribution is 
characterized by the variogram function that measures 
the spatial dependence of neighbouring observations. 
Since the variable describes a spatial phenomenon, this 
variable is called regionalized variable. In our case the 
variable are reflectance or LAI derived from 
reflectance. Since reflectance values of an image are a 
function of spatial position they can be considered as 
regionalized variables. For this study, the variable 
support is the SPOT pixel that is a 20m*20m square. 
Although the value associated to the pixel is a spatial 
average  of  radiative signals over the square we will 
consider the value associated to the pixel as punctual. 
This induces the assumption of homogeneous SPOT 
pixels (intrinsic characteristics of VALERI site). 
Moreover since the pixel value results from a spatial 
averaging process (Point Spread Function) the remote 
sensing variable can be considered continuous on the 
image. Spatial variation and spatial dependence are 
described by the experimental semivariogram ãe(h) 
(commonly called experimental variogram) which is 
the mean squared deviation of a variable at locations 
separated by a given lag distance: 
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z(xi) is the variable at location i, z(xi+h) is the 
variable value at lag h from x and N(h) is the number 
of pairs of points separated by the distance h. Figure 2 
presents the experimental variograms performed over 
the 3km*3km SPOT image for different variables and 
different sites. Two main parameters characterize the 
variogram: 

 
• The total sill (σ²) corresponds to the true 

variance of the data. 
• The range (r) is the lag at which the 

variogram reaches the sill. Up to this 
distance data are spatially autocorrelated, 
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beyond this distance samples are spatially 
independent . 

 
As the regionalized variable z(x)  is difficult to 

model with a simple deterministic function, it  is seen 
as an outcome of a random function Z(x). In this 
context and assuming a second-order stationarity 
hypothesis for Z(x), the theoretical variogram 
describing the spatial dependence and spatial variation 
of the random function is introduced: 

( )[ ]²)()(*5.0)( hxZxZEh +−=γ   (4) 
In practice a theoretical model is fitted on the 
experimental variogram.  

3.2 Theoretical variogram models: 

Two kinds of basic variogram functions were 
used: 

• spherical model: 
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• exponential model:  
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The fitted models used here are nested structure, 
i.e., weighted sums of one or two simple models cited 
above. So each model is characterized by two or four 
parameters (σ1

², σ2
², r1, r2). For each site and for each 

studied variable (RED,NIR,NDVI,LAI) one model is 
fitted (figure 2).  

4  HETEROGENEITY CHARACTERIZATION 

4.1   Vegetation type influence on spatial structure 

The NDVI variograms allow  to draw spatial 
structure differences between sites. Indeed the total sill 
(σ1

²+σ2
²) value indicates the true variance and gives a 

first heterogeneity criterion. The Counami site 
(tropical forest) has the lowest sill value and is the 
most homogeneous site whereas the Alpilles site 
(crop) presents the highest value and appears as the 
most heterogeneous site. On the Counami site, the first 
structure has a very short range (70m) and accounts 
for most of the variance (σ1² is 85% of the total sill). It 
can be considered that there is almost no spatial 
correlation after 70m. Hence it is the most spatially 
homogeneous site. The other sites present a first range 
at larger distances, between 200m and 300m. The 
Alpilles site and the Nezer site have patchy spatial 
patterns. Their first range variogram can be associated 
to the intra-field variability and the discontinuities 
between fields. Moreover it might represent the mean 
size of the fields. On the one hand, on Alpilles, 
differences between field values is particularly high 

with a succession of crop field with high NDVI value 
and bare soil field with low NDVI values leading to a  
very high sill. On the other hand, Nezer presents a 
NDVI value distribution between fields more 
homogeneous leading to lower sill.  Moreover the size 
and the shape of the fields are more regular for the 
Nezer site than those of the Alpilles site. This 
confirms Chen (1999) results, i.e., the importance of 
accounting for contextural parameter (spatial pattern 
organization) to characterize spatial heterogeneity. 
Finally it is more difficult to characterize the second 
range of the model. It can represent: 

 
• a large scale continuous phenomenon : for 

agricultural site like Alpilles it can be soil 
properties, for Puechabon the north west part 
presents different geomorphologic 
characteristics than the rest of the site. 

• some image singularities: Puechabon 
presents a quarry at the north part of the site. 

 
The variogram model was computed on the 

whole 3km*3km site without any mask. So it reflects 
the real spatial structure of the site including 
singularities like quarry, river... Variogram model do 
not reflect only the spatial structure of the vegetation 
making  the site comparison more difficult. In addition 
some noise linked with the remote sensing chain 
processing can influence the variogram ranges (r1,r2): 
remaining non detected clouds, atmospheric effect, 
topography or view angles.  

4.2 Integral range: a parameter derived from the 
theorical variogram 

The integral range (A) (Chiles,1999) is a 
yardstick that summarizes the variogram range.  
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where C(h) is the covariance function defined by: 

)()0()( hChC γ−=    (8) 
By plotting the total sill of each model versus 

the integral range for the NDVI of each site, we can 
draw a first heterogeneity typology (figure 3): spatial 
heterogeneity increases from the tropical forest site 
and the pine forest site to the Mediterranean vegetation 
site and the agricultural site. 

4.3 Variable effect on spatial structure 

Figure 2 does not show important differences 
between NDVI spatial structure and LAI spatial 
structure. No LAI variogram was fitted for the 
Counami site because of saturation problem with 
transfer function applied at high NDVI values. The 
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main difference is between reflectance (NIR, RED) 
variables and NDVI. The first structure (r1) is detected 
in both reflectance and NDVI variograms, but the 
level of variability (total sill) and the second range (r2)   
scale differ. One of the reasons could be that NDVI 
characterizes the amount of surface vegetation 
whereas the reflectance variables are affected by 
several other factors. Therefore, it is more relevant to 
use NDVI variable to describe vegetation spatial 
structure.  

5 SCALING EFFECT 

5.1 Statistical  parameters evolution  with scaling 

A first approach to explore scaling effect is to 
observe the evolution of  the NDVI value distribution 
at different ranges of resolution. Figure 3 shows the 
NDVI histograms for the four sites at four resolutions: 
20m, 100m, 300m, 500m. If the NDVI values were 
independent, standard results in statistics would show 
that the standard deviation of block averages would be 
inversely proportional to their area and that the 
distribution, properly standardized, would tend to a 
Normal distribution. However Alpilles site standard 
deviation decreases by 32 % from 20m resolution to 
300m resolution whereas Counami site standard 
deviation decreases by 60 % from 20m resolution to 
300m resolution. Except for Counami, the distribution 
shows low symmetrization with scaling up. These 
differences between NDVI distribution evolution 
through scaling are explained by the difference 
between spatial autocorellation range. Thus, to 
understand the scaling effect, the spatial structure has 
to be accounted for. 

5.2 Dispersion variance 

a) Dispersion Variance definition 

An other way to explore the evolution of the 
spatial structure with resolution consists in observing 
the variable variance evolution of 20m SPOT pixel (x)   
within coarser block  size (v). Calling V the entire 
domain image (3000m*3000m), V is decomposed in a 
union of n congruent subregions v ( v1…vn). We 
respectively call Z(V)  and Z(vi) the average variable 
value  over V and the block vi : 

Spatial variability can be compared at three different 
scales (Friedl, 1997): 
 

1. the variation of the pixel value (x) with 
respect to the regional average value on the 
whole image (V) 
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∑
x

represents  the pixel sum over the whole image. 

2. the variation of subregional average value (v 
block value) with respect to the regional 
average value on the whole image (V) 
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3. the average variation of the pixel values 
within block v 
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S²(x,V) corresponds to the variance of the whole 
image, that can be seen as the variance of pixel values 
within blocks plus the variance of block values within 
the image (Krige relation, Wackernagel,1995): 
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We called S²(x,v) the experimental dispersion variance 
of x within v. A theorical dispersion variance can be 
derived from the variogram model and is obtained by 
taking the expectation (Wackernagel,1995): 
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b) Dispersion variance evolution with resolution 

Figure 5 presents the evolution of  experimental 
and theoretical dispersion variances versus the 
aggregation scale. As expected, the dispersion 
variance increases with the resolution. The comparison 
of the dispersion variance evolution with resolution for 
the four sites confirms the first observations made in 
§3 . Besides it allows to makes inferences on data 
regularization, ie, with increasing resolution, data 
becomes more spatially continuous which is reflected 
by changes in geostatistical properties (lower sill, 
more regular variogram at the origin, dispersion 
variance reaching the sill): 

• Counami being the most homogeneous site, 
its dispersion variance reaches a sill very 
rapidly: increasing the support leads to a 
rapid data regularization . 

• The other sites do not reach a sill at 1000m 
resolution, meaning that no total 
regularization is reached at this scale, ie, 
data are still spatially autocorrelated. 
Alpilles is the most heterogeneous site, 
presenting high dispersion variance value.  
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Puechabon site presents an important 
regularization at short distance.  

 
Finally, the quite good fitting of the theoretical 

dispersion variance on experimental dispersion 
variance confirms the model fitting performances. 

6 INFLUENCE OF HETEROGENEITY ON LAI 
ERROR ESTIMATES  

The LAI variable is derived from remote 
sensing data by a semi empirical expression 
(LAI=f(NDVI). However this transfer function 
derived from SAIL simulation is strictly  valid for 
homogeneous surfaces. To obtain the “integrated” 
LAIi value at coarser resolution, the right way consists 
in aggregating the LAI computed at the higher spatial 
resolution (20m): 

∫= f(ndvi)LAIi    (14) 

However the LAI at coarse resolution can be 
approximated by applying the transfer function f over 
coarse resolution NDVI data, ie, for values aggregated 
at the coarse resolution: the “mean” LAIl or “lumped” 
LAI is obtained as: 

)f(NDVILAI il=    (15) 

Where NDVIi is the integrated NDVI at coarse 
resolution. 

Because of the non linearity of the transfer 
function an error is made in computing the lumped 
LAIl. This error can be evaluated by the root mean 
square difference between the lumped variable and the 
distributed variable at a given resolution. Figure 6 
presents a plot between the dispersion variance and the 
RMSE computed between lumped and integrated LAI 
for different resolutions. By increasing the resolution, 
the RMSE is increasing linearly with the dispersion 
variance in log-log scale. The four sites have RMSE 
ranges that increase according to their spatial 
heterogeneity degree confirming the spatial 
heterogeneity typology made on §3.2. However for the 
Puechabon site the RMSE value decreases at 1000 m 
resolution. Two hypothesis arise: On the one hand, a 
RMSE computed with 9 samples (at 1000m 
resolution) may not be statistically consistent. On the 
other hand, at 1000m resolution the Puechabon NDVI 
image is not stationary with some very homogeneous 
pixels and very heterogeneous pixels. Therefore since 
the NDVI range value changes with increasing 
resolution, the degree of non linearity of the transfer 
function is also changing and can influence the LAI 

error estimates. In conclusion, dispersion variance is a 
relevant parameter that reflects spatial heterogeneity 
importance at a given resolution and could be used to 
assess LAI error. 

7 CONCLUSIONS AND PROSPECTS 

Biophysical variable estimates error results 
from the non linearity of the transfer function and the 
spatial heterogeneity of the data. It will be important to 
account for these two features to improve biophysical 
variable estimate at coarse resolution. This study 
shows that geostatistical methodology allow to 
describe the spatial structure characteristics of 
different landscapes. By computing variograms, it is 
possible to make some inference on spatial 
heterogeneity between vegetation sites  and to link the 
data autocorrelation with scaling issues. Dispersion 
variance provides an indication on the degree of 
heterogeneity for a given resolution. This parameter 
will be useful to account for spatial heterogeneity in 
biophysical variable estimates.  
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APPENDIX 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure1: NDVI images of the studied sites (3km*3km): a Alpilles, Crop Site (March), mean NDVI=0.41, std 
NDVI=0.19; b: Puechabon (France), Mediterranean Forest (June), mean=0.54, std=0.1; c: Nezer (France), Pine 
Forest (June), mean=0.65, std=0.06; d: Counami (French Guyana), Tropical Forest (October), mean=0.69, 
std=0.029 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Experimental (crosses) and theoretical variograms (line) for  the 4 landscapes studied: Alpilles (red), 
Puechabon (black), Nezer (green), Counami (red) 

a/ RED  
b/ NIR  

c/ NDVI  d/  LAI 
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Figure 3: Integral Range versus total sill (σ²) for NDVI variable  Figure 4:  NDVI distribution for different sites   at 
different resolutions 

Figure 5: Dispersion Variance versus resolution Figure6: RMSE between integrated LAI and mean LAI   

versus dispersion variance . 


