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Abstract

A Bidirectional Reflectance Distribution Function (BRDF ) catalog of different crops (mainly

wheat, alfalfa, sunflower and maize) has been acquired thanks to Alpilles/ReSeDA campaign,

over the whole crop cycles in 1997. This was achieved using the airbornePOLDERsensor.

The aim of this study is to test the ability of neural network techniques to accurately estimate

canopy biophysical variables from reflectance data. The biophysical variables of interest con-

sidered are cover fraction and leaf area index. A well known and validated canopy radiative

transfer model (SAIL) is first used to simulate two BRDF databases: (1) a learning data set

allow to train the neural networks; (2) the second data set allow a first validation of this tech-

nique. In a second time, we use ReSeDAPOLDERproducts and apply the calibrated neural

networks to derive biophysical variables estimates. These estimates are then compared toin

situmeasurements for the 16 acquisition dates and different fields and crops. We also compare

NNet NNet performances versus a NDVI-based technique.

Correspondence to:M. Weiss
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1 Introduction

Protecting our environment and understanding the impact of the human activity on the processes that occur

at the Earth surface is one of the main concern of the XXIth century. The characterization of the continen-

tal biosphere in terms of canopy biophysical variables is thus of prime interest in many applications that

allow global change understanding. Remote sensing appears to be a very powerful tool to get quantitative,

temporal and spatial information about those variables. Large swath sensors with relatively high temporal

repetitivity such asPOLDER, NOAA/AVHRRR, VEGETATION, MODIS, MISR, ...,allow a frequent cover-

age of the Earth surface. Concurrently, different methods to estimate canopy biophysical variables from

reflectance data were elaborated:

� Vegetation Indices (V I) approach:V I are band combinations of reflectance values. The most simple

one is the Normalized Difference Vegetation IndexNDV I (Rouse et al., 1974) which is based on

the contrast between the soil and vegetation reflectance in the red and near-infrared domains. Many

authors have developed empirical relationships betweenV Is and canopy biophysical variables. This

methods are interesting since they are very simple but the accuracy of biophysical variable estimation

may be quite low. Moreover,V Is are usually sensitive to the soil background, canopy chlorophyll

content, or to the orientation and spatial distribution of the leaves in the canopy (Asrar et al., 1984;

Sellers et al., 1994; Carlson and Ripley, 1997; Gobron et al., 1999).

� Physical modeling approach: it is based on the inversion of canopy reflectance models that describe

the radiative transfer in the canopy as a function of biophysical variables which characterize the

canopy architecture and the optical properties of vegetation elements and soil. Model inversion is

usually more accurate thanV I but it is based on iterative and time consuming optimization processes

that are sensitive to the initial guess of the solution (Pinty and Verstraete, 1991; Hall et al., 1995;

Bicheron and Leroy, 1999).

� Hybrid approach: it is based on the elaboration of a learning data base that is the most representative

as possible of what the sensor should observe. In this data base, each canopy is characterized by

biophysical variables corresponding to reflectance values. Look-Up-Tables (LUT ) consists in com-

puting the distance between a set of measured reflectances and reflectance values of each canopy in

theLUT . The estimated canopy variables are those of theLUT element for which this distance is

minimum (Knyazikhin et al., 1998). Neural Network (NNet) can be considered as a ”black box” that

fit a relationship between reflectance values and canopy biophysical variables (Smith, 1993; Jin and

Liu, 1997; Kimes et al., 1997; Abuelgasim et al., 1998). The calibration is performed on the learn-

ing data set. The main difference is thatLUTs focus on the minimal distance between reflectances

althoughNNets minimize the distance between canopy biophysical variables. Once the learning

phase is achieved, hybrid approaches are accurate, fast and require low computer resources.
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This study is dedicated to the development and the validation of a vegetation monitoring algorithm from

satellite data. The estimation of canopy biophysical variables from bidirectional reflectance data is per-

formed usingNNets techniques. We consider leaf area index (LAI) and nadir gap fraction (P o) that are

of prime interest for canopy functioning or evapotranspiration modeling (Yang et al., 1999). A synthetic

database is generated using well-known radiative transfer models to allow the calibration of theNNets.

As neural networks require a constant number of normalized inputs, reflectance data are first pre-processed.

Finally, performances are compared to theNDV I based technique for the estimation of the nadir gap frac-

tion (Po) and Leaf Area Index (LAI). This is performed both on simulated and experimental data sets.

The impact of spatial resolution is also investigated using the experimental data from the Alpilles ReSeDA

campaign.

2 Generation of the synthetic learning data base

The learning data base, composed of biophysical variables and corresponding bidirectional reflectance val-

ues, is used for the calibration ofNNets. It is therefore necessary to get a wide range of situations including

a variety of canopies. Since no such a data set exists, we generate it using well-known radiative transfer

models. The learning data base is better representative of the reality that the radiative transfer model is

accurate and that the range of variation of its inputs is realistic.

2.1 Model used

Numerous radiative transfer models are developed in the literature, from the most simple and empirical ones

such as linear BRDF models (Wanner et al., 1995) to the most complex and physically based ones such as

radiosity (Chelle and Andrieu, 1998) or ray-tracing models. Considering that we perform 1500 simulations,

we have to make a compromise between the model accuracy, time consuming of the simulations and the

number and physical signification of the model input variables. We thus use theSAIL model (Verhoef,

1984, 1985) that has been validated by many authors on various canopies (Goel and Thompson, 1984;

Badwahr et al., 1985; Espa˜na, 1997). This model was modified by Andrieu et al. (1997) to include the hot

spot feature (Kuusk, 1991).SAIL requires the leaf (resp. soil) optical properties that are simulated with

thePROSPECT model (Jacquemoud and Baret, 1990), (resp.SOILSPECT model (Jacquemoud et al.,

1992). Simulations are performed in airbornePOLDER bands, center at 550nm, 670nm and 864nm. As

we assume that reflectance data are atmosphere corrected, the blue band is not considered since it is the

most affected by the atmospheric effects.

2.2 Range of input variables

Table 1 describes the variation of the input variables used to generate the learning data base. The range

of leaf optical properties is given by theLOPEX data set (Hosgood et al., 1995). The variation of

SOILSPECT input variables corresponds to that of Jacquemoud et al. (1992). Structure parameters
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are uniformly distributed between realistic values. As the algorithm should be adapted for any sensor, we

consider that the acquisition could be performed at any date, for any latitude. To determine observation

condition, the orbitography of theVEGETATIONsensor over the 26 days of its orbital cycle is taken as an

example.

2.3 Biophysical variables of interest

As our aim is the estimation of biophysical variables from remote sensing data, we only focus on such vari-

ables that influence strongly or are derived from the radiative transfer process. We thus consider one primary

variable,LAI , that is aSAIL input, and a secondary variablePo that corresponds to the complementary

to one of the vegetation cover fraction and is computed by theSAIL model.

At the end of the simulations, we obtain the top of canopy bidirectional reflectance data and the corre-

sponding biophysical variables of 1500 homogeneous canopies various in structural and optical properties

and under different illumination conditions. The data set is divided in two independent parts: the first one

is the learning data set used to fit relationships between biophysical variables and reflectance data, and the

second one is the test data set which allows to evaluate the retrieval performances of biophysical variables.

3 Calibration of NNets and NDV I techniques

Two methods were developed for nadir gap fraction and leaf area index estimation from a set of bidirec-

tional reflectance data. The first one is empirical and based on the computation ofNDV I and on the

existing relationships betweenLAI=NDV I andPo=NDV I . The second one consists in usingNNets to

directly relate reflectance data to biophysical variables. As the number and direction of large swath sensor

observations depends on latitude and cloud occurrence, bidirectional reflectance data are first pre-processed

by using a linearBRDF model. The performances ofNNets andNDV I are compared using the Root

Mean Square Error (RMSE) and theT statistics that measures the scattering around the (1:1) line. When

T is close to 1.0, the fitting is very good.

RMSE =

s
1

n

X
n

x� x̂2 (1)

T = 1�

P
n
x� x̂2P

n
x� �x2

(2)

wherex (resp.x̂) is the measured (resp. estimated) variables,n is the number of data and�x the average

of x over then samples.

3.1 Pre-processing the bidirectional reflectance data

A linearBRDF model is used to normalize theBRDF acquired by the sensor. This is required both for

the use ofNDV I (to be able to compare the same quantity from one pixel to another or from one date
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to another) andNNets that require a constant number of inputs. Among the numerousBRDF models

existing in the literature (cf review of Wanner et al. (1995)), theMRPV model (Engelsen et al., 1996)

appears to be one of the most performant (Weiss et al., 2000). The choice of this model is driven by the

following arguments:

� Linearity : it resumes the fitting over the observed BRDF samples to a matrix pseudo-inversion which

significantly reduces the computation time;

� Limited number of parameters : depending on the latitude and cloudiness, only few directional data

are available;

� The model should accurately fit the reflectance data to keep the directional information;

� The parameters should remain quite constant whether the inversion is done over the whole reflectance

data or only on a restricted amount of these data;

TheMRPV model is semi-linear and requires three parameters� i:

ln
�(�v ; �s; �)

H
= �1 + �2 ln cos �s cos �v(cos �s + cos �v) + �3 cos � (3)

whereH is the hot spot function which depends on view (� v) and solar (�s) zenith angles and the relative

azimuth angle (�), and� is the phase angle. BesidesMRPV parameters, we also compute the nadir

reflectance (�0) that is usually used as a normalized parameter. The hemispherical reflectance (� h) is also

very useful to get an estimate of the canopy albedo. We compute it by integration of the bidirectional

reflectance in a Gaussian quadrature.

The accuracy of the model fitting is first tested on the simulated data set (Fig. 1): the model is inverted on a

random selection of data (20%, 50% 80%, and 100%) to take into account cloud occurrence. It is then run in

the forward direction to retrieve all the bidirectional reflectance data. Results are globally satisfactory with

a relativeRMSE (RMSE divided by the amplitude of the reflectance) between estimated and measured

reflectance lower than 0.03%. TheRMSE increases with the percentage of cloud since the number of data

used for the fitting decreases. The model presents thus good extrapolation capacities to fit the bidirectional

reflectance data.

As stated earlier, the parameters should remain quite constant whether the inversion is performed over

the whole reflectance data or only on a restricted amount of these data. Fig. 2 shows the relativeRMSE

between estimatedMRPV parameters by inverting the model over all or a selection of directions. The

nadir reflectance keeps very stable whether 100% or 20% of the observation directions are used for the

fitting. The same behavior is observed for bothMRPV parameters and hemispherical reflectance, with

higherRMSE, except for�2 that is not stable.
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3.2 NDV I based method

Among the numerous vegetation indices developed (Baret and Guyot, 1991), theNDV I is one of the most

used in many applications. It is based on the contrast between the soil and the vegetation behavior in the

red and near infrared domains. Following the results ofx 3.1, we consider the nadirNDV I .

NDV I =
�0(865nm)� �0(670nm)

�0(865nm) + �0(670nm)
(4)

NadirNDV I andP0 are both related toLAI by exponential laws (Asrar et al., 1984; Nilson, 1971),

which allow the derivation ofP0 as a function ofNDV I .

P0 = (
NDV I �NDV I1
NDV Is �NDV I1

)KP0 (5)

LAI = �
1

KLAI

ln
NDV I �NDV I1
NDV Is �NDV I1

(6)

where

� NDV I1 is the asymptotic value of nadirNDV I whenLAI tends to1 (practically,LAI=8);

� NDV Is is the bare soilNDV I value;

� KLAI andKP0 are extinction coefficients.

To evaluate those four parameters, we use the simplex method (Nelder and Mead, 1987) to minimize a

cost function. This function is defined as theRMSE between estimated variables from eq 5 and 6 and

their actual value. The relationship is fitted on the learning data set (NDV I1=0.96,NDV Is=0.13,KLAI

= 0.67 andKP0=0.72) and validated on the test data set (Tab. 2). A large scattering around the (1:1) line

(low T values) is observed due to the sensitivity ofNDV I to the canopy geometry, soil background, and

sun geometry.

3.3 NNets based method

The main advantage ofNNets is that, although the learning stage takes a long time due to optimization

process, it provides instantaneously the solution when run in the forward direction. Neural networks are

characterized by the type of neurons used (with a weight, a bias and a transfer function), the way that they

are organized (number of layers and number of neurons per layer), and the learning rule. In this study,

we use the back-propagation algorithm to calibrate the neural networks (Rummelhart et al., 1986). 50

NNets, corresponding to 50 different initializations of weights and biases are trained in parallel to control

the stability of the solution. The estimated variable is computed as the median value over the 50NNets.

To increaseNNets performances, we normalize the input/output parameters with respect to their minimum

and maximum values over the learning data set. This allows reaching the solution faster. Over-fitting on
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the calibration data set is avoided by stopping the training when theRMSE value between estimated and

actual output variables decreases on the learning data set and increases on the over-fitting data set. The

over-fitting data set is composed of Alpilles/ReSeDA data acquired on wheat (x 4).

Nadir gap fraction estimation: considering that the relationship betweenP 0 and reflectance is quite

simple (linear), and that nadir reflectance is very stable byMRPV inversion,NNet inputs are� 0 in the

threePOLDER bands and the cosine of the solar zenith angle. We have a two hidden layer network,

with respectively 4 logsigmöid and one linear neurons. Increasing the number of neurons or layers leads to

over-fitting. The networks converge after about 100 iterations and remain stable after.

Leaf area index estimation: considering that the relationship betweenLAI and reflectance is non linear,

the hemispherical reflectance in the 3 wave bands are added to� 0 and the cosine of the solar zenith angle to

get theNNet inputs. We have a three hidden layers network, with respectively 4 logsigmoïd, 2 logsigmöid

and one linear neurons.

Results: Table 2 shows thatNNet performances are much better thanNDV I , both forLAI andP 0.

RMSE is divided by 4 forP0 and by 2 forLAI . The scattering around the (1:1) line is higher forLAI

than forP0 since there is a saturation of the reflectance for highLAIs. This feature is increased when

consideringNDV I estimates.

4 Validation of NNets and NDV I techniques on the Alpilles/ReSeDA data set

The experimental site is an agricultural area (5kmx5km) located in the south of France (N43047, E4045).

Measurements were performed from October 96 to November 97, on various crops (Pr´evot et al., 1998).

Airborne reflectance measurements were achieved monthly using thePOLDER instrument. Five flight

lines allowed theBRDF acquisition. Spatial resolution was 20m. Images were corrected from instrumen-

tal, geometrical and atmospheric effects. Ground measurements ofLAI were performed using a planimeter.

To derive the nadir gap fraction fromLAI data, we used relationships existing in the literature (Tab. 3).

4.1 Nadir gap fraction and leaf area index estimation

NNets andNDV I methods are applied for bothLAI andP0 estimation (Fig. 3, Tab. 4). We retrieve the

results obtained on the synthetic data set with higherRMSE values due to the residual noise observed on

reflectance data. Performances are better forP0 than forLAI . NNets perform better thanNDV I . The

difference between the two methods for the estimation is however less important than for the synthetic data

set:RMSE divided by 1.6 forP0 and by 1.1 forLAI . This is mainly due to the fact that there is only

12% of the measurements that corresponds toLAIs higher than 2.5, for which the saturation effect is much

higher withNDV I .
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4.2 Impact of the spatial resolution forPo andLAI estimation.

As we consider data provided by large swath satellite sensors, we have to study the impact of the spatial

resolution on the retrieval of nadir gap fraction and leaf area index. A 1km by 1km square is thus extracted

from the center of theReSeDA site. For this area, we compared the estimates, using two methods for the

16 flight dates:

1. TheNNet input variables are averaged over 50POLDER sub-pixels of the 1km2 area. Corre-

spondingLAI andP0 values are computed;

2. We runNNets to getLAI andP0 for eachPOLDER sub-pixels, and average those values on the

whole 1km2 area.

As there is an important part of bare soils, we observe only lowLAI values (fig. 4). Results show that

the nadir gap fraction estimation is not sensitive to the spatial resolution, since it is quite linearly related to

the reflectance. Conversely, theLAI is much more sensitive to the spatial resolution and is underestimated

with (1) as compared to (2). This leads to the conclusion that leaf area index is underestimated when using

large swath sensors.

5 Conclusions

This study is dedicated to the estimation of canopy biophysical variables from bidirectional reflectance

derived from large swath satellite data. This algorithm, based on neural networks, is built on a data set

generated with radiative transfer models. As compared to theNDV I , it presents good performances of

estimation on synthetic as well as on experimental data. Results show that nadir gap fraction is more

accurately estimated thanLAI due to the saturation of the signal for dense canopies. The estimation of

LAI is also sensitive to the spatial resolution. The algorithm we developed can be extended for any large

swath sensors. It also includes a way to normalize reflectance data. This study requires further validation

on actual data, corresponding to a wide range of canopies, especially forest and sparse vegetation.

Acknowledgements.The authors thank the CNES (Centre National d’Etudes Spatiales) for the financial support.
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Tables

Table 1. Range of radiative transfer model inputs. For Gaussian law (G), m and� stand for the average and standard

deviation values.U stands for uniform distribution law.

Model Inputs Distribution Laws

Structure variables

Leaf Area IndexLAI U,min=0,max=6

Average Leaf Angle U,min=150,max=750

Hot Spot parameter U,min=0.01,max=1

Leaf Optical Properties

Chlorophyll (�g:cm�2) G,m=50,� = 16

Water (cm�1) G,m=0.01� = 0.0024

Dry Matter (g:cm�2) G,m=50,� = 0.0024

Mesophyll parameter G,m=1.63,� = 0.26

Soil Optical Properties

Roughness U,min=0,max=0.03

Phase Function U,min=-1.8,max=1.8

Phase Function U,min=0.05,max=1

Single Scattering Albedo Jacquemoud et al. (1992)

Viewing Conditions

Day of the year U,min=1,max=365

Latitude U,min=0,max=670

Table 2. NDV I andNNet performances on the synthetic test data set.

NDV I NNet

RMSE T RMSE T

P0 0.16 0.76 0.04 0.98

LAI 1.10 0.69 0.53 0.92

Table 3. Relationships used to derive nadir gap fraction fromLAI planimeter measurements. For Alfalfa, no value

was found in the literature.

Crop Authors

Wheat exp(�0:34LAI) Baret et al. (1993)

Maize exp(�0:34LAI) España (1997)

Sunflower exp(�0:6LAI) Shell et al. (1974)

Alfalfa exp(�0:5LAI)
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Table 4. NDV I andNNet performances on the Alpilles/ReSeDA data set.

NDV I NNets

RMSE T RMSE T

P0 0.13 0.75 0.08 0.9

LAI 0.49 0.79 0.44 0.82
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Figure Captions

Fig. 1. Extrapolation capacities of theMRPV model. The model inversion is first performed on a restricted amount

of data. Bidirectional reflectance is then estimated in all directions of observation.

Fig. 2. Stability ofMRPV parameters (�i), nadir reflectance (�o) and hemispherical reflectance (�h).

Fig. 3. Nadir gap fraction and leaf area index estimation usingNNets on the Alpilles/ ReSeDA data. (�:maize,

�:wheat,4: sunflower,�:alfalfa)

Fig. 4. Testing the impact of spatial resolution ofLAI andP0 estimation for the 16POLDER acquisition dates. (1)

Using the averaged reflectance over the 1km2 pixel as input toNNets. (2) Using the averagedNNet output.
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Fig. 2. Stability ofMRPV parameters

(�i), nadir reflectance (�o) and hemi-

spherical reflectance (�h).
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area index estimation usingNNets on

the Alpilles/ ReSeDA data. (�:maize,

�:wheat,4: sunflower,�:alfalfa)
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the 1km2 pixel as input toNNets. (2)

Using the averagedNNet output.
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