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Abstract

A Bidirectional Reflectance Distribution FunctioB R D F') catalog of different crops (mainly
wheat, alfalfa, sunflower and maize) has been acquired thanks to Alpilles/ReSeDA campaign,
over the whole crop cycles in 1997. This was achieved using the airiDh®ERSsensor.

The aim of this study is to test the ability of neural network techniques to accurately estimate
canopy biophysical variables from reflectance data. The biophysical variables of interest con-
sidered are cover fraction and leaf area index. A well known and validated canopy radiative
transfer model§ AIL) is first used to simulate two BRDF databases: (1) a learning data set
allow to train the neural networks; (2) the second data set allow a first validation of this tech-
nigue. In a second time, we use ReSePALDERproducts and apply the calibrated neural
networks to derive biophysical variables estimates. These estimates are then compared to
situmeasurements for the 16 acquisition dates and different fields and crops. We also compare
N Net N Net performances versus a NDVI-based technique.

Correspondence tayl. Weiss



1 Introduction

Protecting our environment and understanding the impact of the human activity on the processes that occur
at the Earth surface is one of the main concern of the’XXkntury. The characterization of the continen-

tal biosphere in terms of canopy biophysical variables is thus of prime interest in many applications that
allow global change understanding. Remote sensing appears to be a very powerful tool to get quantitative,
temporal and spatial information about those variables. Large swath sensors with relatively high temporal
repetitivity such a®®OLDER, NOAA/AVHRRR, VEGETATION, MODIS, MISRallow a frequent cover-

age of the Earth surface. Concurrently, different methods to estimate canopy biophysical variables from
reflectance data were elaborated:

¢ Vegetation Indicesl( ) approach¥ I are band combinations of reflectance values. The most simple
one is the Normalized Difference Vegetation Ind&DV I (Rouse et al., 1974) which is based on
the contrast between the soil and vegetation reflectance in the red and near-infrared domains. Many
authors have developed empirical relationships betWwéknand canopy biophysical variables. This
methods are interesting since they are very simple but the accuracy of biophysical variable estimation
may be quite low. Moreovel/ s are usually sensitive to the soil background, canopy chlorophyll
content, or to the orientation and spatial distribution of the leaves in the canopy (Asrar et al., 1984;
Sellers et al., 1994; Carlson and Ripley, 1997; Gobron et al., 1999).

¢ Physical modeling approach: it is based on the inversion of canopy reflectance models that describe
the radiative transfer in the canopy as a function of biophysical variables which characterize the
canopy architecture and the optical properties of vegetation elements and soil. Model inversion is
usually more accurate thanl but it is based on iterative and time consuming optimization processes
that are sensitive to the initial guess of the solution (Pinty and Verstraete, 1991; Hall et al., 1995;
Bicheron and Leroy, 1999).

e Hybrid approach: it is based on the elaboration of a learning data base that is the most representative
as possible of what the sensor should observe. In this data base, each canopy is characterized by
biophysical variables corresponding to reflectance values. Look-Up-TdtlEE)consists in com-
puting the distance between a set of measured reflectances and reflectance values of each canopy in
the LUT'. The estimated canopy variables are those of[thd" element for which this distance is
minimum (Knyazikhin et al., 1998). Neural Network (Vet) can be considered as a "black box” that
fit a relationship between reflectance values and canopy biophysical variables (Smith, 1993; Jin and
Liu, 1997; Kimes et al., 1997; Abuelgasim et al., 1998). The calibration is performed on the learn-
ing data set. The main difference is thal/ T's focus on the minimal distance between reflectances
although N Nets minimize the distance between canopy biophysical variables. Once the learning
phase is achieved, hybrid approaches are accurate, fast and require low computer resources.



This study is dedicated to the development and the validation of a vegetation monitoring algorithm from
satellite data. The estimation of canopy biophysical variables from bidirectional reflectance data is per-
formed usingV Nets techniques. We consider leaf area indéxi() and nadir gap fraction¥,) that are

of prime interest for canopy functioning or evapotranspiration modeling (Yang et al., 1999). A synthetic
database is generated using well-known radiative transfer models to allow the calibratiomaiiie.

As neural networks require a constant number of normalized inputs, reflectance data are first pre-processed.
Finally, performances are compared to tfi®V I based technique for the estimation of the nadir gap frac-

tion (P,) and Leaf Area Index{AI). This is performed both on simulated and experimental data sets.
The impact of spatial resolution is also investigated using the experimental data from the Alpilles ReSeDA
campaign.

2 Generation of the synthetic learning data base

The learning data base, composed of biophysical variables and corresponding bidirectional reflectance val-
ues, is used for the calibration dNets. Itis therefore necessary to get a wide range of situations including

a variety of canopies. Since no such a data set exists, we generate it using well-known radiative transfer
models. The learning data base is better representative of the reality that the radiative transfer model is
accurate and that the range of variation of its inputs is realistic.

2.1 Model used

Numerous radiative transfer models are developed in the literature, from the most simple and empirical ones
such as linear BRDF models (Wanner et al., 1995) to the most complex and physically based ones such as
radiosity (Chelle and Andrieu, 1998) or ray-tracing models. Considering that we perform 1500 simulations,
we have to make a compromise between the model accuracy, time consuming of the simulations and the
number and physical signification of the model input variables. We thus usgAlé& model (Verhoef,

1984, 1985) that has been validated by many authors on various canopies (Goel and Thompson, 1984;
Badwahr et al., 1985; Espa; 1997). This model was modified by Andrieu et al. (1997) to include the hot
spot feature (Kuusk, 19915 AT L requires the leaf (resp. soil) optical properties that are simulated with

the PROS PECT model (Jacquemoud and Baret, 1990), (régpl LS P ECT model (Jacquemoud et al.,

1992). Simulations are performed in airboR® L D ER bands, center at 550nm, 670nm and 864nm. As

we assume that reflectance data are atmosphere corrected, the blue band is not considered since it is the
most affected by the atmospheric effects.

2.2 Range of input variables

Table 1 describes the variation of the input variables used to generate the learning data base. The range
of leaf optical properties is given by theOPEX data set (Hosgood et al., 1995). The variation of
SOILSPECT input variables corresponds to that of Jacquemoud et al. (1992). Structure parameters



are uniformly distributed between realistic values. As the algorithm should be adapted for any sensor, we
consider that the acquisition could be performed at any date, for any latitude. To determine observation
condition, the orbitography of thHédEGETATIONsensor over the 26 days of its orbital cycle is taken as an
example.

2.3 Biophysical variables of interest

As our aim is the estimation of biophysical variables from remote sensing data, we only focus on such vari-
ables that influence strongly or are derived from the radiative transfer process. We thus consider one primary
variable,LAI, that is aSAIL input, and a secondary variallg, that corresponds to the complementary

to one of the vegetation cover fraction and is computed bysthé L. model.

At the end of the simulations, we obtain the top of canopy bidirectional reflectance data and the corre-
sponding biophysical variables of 1500 homogeneous canopies various in structural and optical properties
and under different illumination conditions. The data set is divided in two independent parts: the first one
is the learning data set used to fit relationships between biophysical variables and reflectance data, and the
second one is the test data set which allows to evaluate the retrieval performances of biophysical variables.

3 Calibration of NNets and NDV I techniques

Two methods were developed for nadir gap fraction and leaf area index estimation from a set of bidirec-
tional reflectance data. The first one is empirical and based on the computatdoP B and on the

existing relationships betwednd7/NDV I andP,/N DV I. The second one consists in usiNgVets to

directly relate reflectance data to biophysical variables. As the number and direction of large swath sensor
observations depends on latitude and cloud occurrence, bidirectional reflectance data are first pre-processed
by using a linea'B RDF model. The performances &f Nets and N DV I are compared using the Root

Mean Square Erroti{M S E) and theT statistics that measures the scattering around the (1:1) line. When

T is close to 1.0, the fitting is very good.

RMSE = - T —z (1)
-2
x—Z

wherez (resp.z) is the measured (resp. estimated) variables,the number of data anglthe average
of = over then samples.

3.1 Pre-processing the bidirectional reflectance data

A linear BRDF model is used to normalize tHe R D F' acquired by the sensor. This is required both for
the use ofNDV'I (to be able to compare the same quantity from one pixel to another or from one date



to another) andV Nets that require a constant number of inputs. Among the numeBR® F' models
existing in the literature (cf review of Wanner et al. (1995)), ek PV model (Engelsen et al., 1996)
appears to be one of the most performant (Weiss et al., 2000). The choice of this model is driven by the
following arguments:

e Linearity : it resumes the fitting over the observed BRDF samples to a matrix pseudo-inversion which
significantly reduces the computation time;

¢ Limited number of parameters : depending on the latitude and cloudiness, only few directional data
are available;

e The model should accurately fit the reflectance data to keep the directional information;

e The parameters should remain quite constant whether the inversion is done over the whole reflectance
data or only on a restricted amount of these data;

The M RPV model is semi-linear and requires three parameters

p(0y,05, )

I
"

= a; + as Incos b cos b, (cos O + cosb,) + ag cosé 3)

whereH is the hot spot function which depends on vidy)and solar{;) zenith angles and the relative
azimuth angle ¢), and¢ is the phase angle. Besid@$ RPV parameters, we also compute the nadir
reflectancedy) that is usually used as a normalized parameter. The hemispherical reflegtahcedlso
very useful to get an estimate of the canopy albedo. We compute it by integration of the bidirectional
reflectance in a Gaussian quadrature.

The accuracy of the model fitting is first tested on the simulated data set (Fig. 1): the modelis inverted on a
random selection of data (20%, 50% 80%, and 100%) to take into account cloud occurrence. Itis thenrunin
the forward direction to retrieve all the bidirectional reflectance data. Results are globally satisfactory with
arelativeRM SE (RM SE divided by the amplitude of the reflectance) between estimated and measured
reflectance lower than 0.03%. TV S E increases with the percentage of cloud since the number of data
used for the fitting decreases. The model presents thus good extrapolation capacities to fit the bidirectional
reflectance data.

As stated earlier, the parameters should remain quite constant whether the inversion is performed over
the whole reflectance data or only on a restricted amount of these data. Fig. 2 shows theRélafive
between estimated/ RPV parameters by inverting the model over all or a selection of directions. The
nadir reflectance keeps very stable whether 100% or 20% of the observation directions are used for the
fitting. The same behavior is observed for bathR PV parameters and hemispherical reflectance, with
higherRM SE, except fora, that is not stable.



3.2 NDVI based method

Among the numerous vegetation indices developed (Baret and Guyot, 199M)[Xkd is one of the most
used in many applications. It is based on the contrast between the soil and the vegetation behavior in the
red and near infrared domains. Following the result$ ®fL, we consider the nadiv DV I.

po(865nm) — po(670nm)

NDVI =
po(865nm) + po(670nm)

(4)

Nadir NDV'I and P, are both related td.AI by exponential laws (Asrar et al., 1984; Nilson, 1971),
which allow the derivation of’y as a function ofVDV I.

NDVI—-NDVI,
)Kro (5)

NDVI, — NDVI
_ 1 0 NDVI—-NDVI,
Kpar  NDVI, —NDVI,

Po=

LAl = (6)

where
e NDV I, isthe asymptotic value of nadi¥ DV I whenL AT tends toco (practically, LAT=8);
e NDVI, is the bare soiNDV I value;
e K15 andKp, are extinction coefficients.

To evaluate those four parameters, we use the simplex method (Nelder and Mead, 1987) to minimize a
cost function. This function is defined as tRa/SE between estimated variables from eq 5 and 6 and
their actual value. The relationship is fitted on the learning datas&xt\( 7 ,=0.96, N DV 1,=0.13,K 1 41
= 0.67 andK p,=0.72) and validated on the test data set (Tab. 2). A large scattering around the (1:1) line
(low T values) is observed due to the sensitivity/ oDV I to the canopy geometry, soil background, and
sun geometry.

3.3 NNets based method

The main advantage d¥ Nets is that, although the learning stage takes a long time due to optimization
process, it provides instantaneously the solution when run in the forward direction. Neural networks are
characterized by the type of neurons used (with a weight, a bias and a transfer function), the way that they
are organized (number of layers and number of neurons per layer), and the learning rule. In this study,
we use the back-propagation algorithm to calibrate the neural networks (Rummelhart et al., 1986). 50
N Nets, corresponding to 50 different initializations of weights and biases are trained in parallel to control
the stability of the solution. The estimated variable is computed as the median value overNiiée59.

To increaséV Nets performances, we normalize the input/output parameters with respect to their minimum
and maximum values over the learning data set. This allows reaching the solution faster. Over-fitting on



the calibration data set is avoided by stopping the training wheRie5 £ value between estimated and
actual output variables decreases on the learning data set and increases on the over-fitting data set. The
over-fitting data set is composed of Alpilles/ReSeDA data acquired on whéat (

Nadir gap fraction estimation: considering that the relationship betweBp and reflectance is quite
simple (linear), and that nadir reflectance is very stabléhi PV inversion,N Net inputs arep in the
three POLDER bands and the cosine of the solar zenith angle. We have a two hidden layer network,
with respectively 4 logsigmid and one linear neurons. Increasing the number of neurons or layers leads to
over-fitting. The networks converge after about 100 iterations and remain stable after.

L eaf areaindex estimation: considering that the relationship betwdedI and reflectance is non linear,
the hemispherical reflectance in the 3 wave bands are adgedtiod the cosine of the solar zenith angle to
get theN Net inputs. We have a three hidden layers network, with respectively 4 logsiyrddogsigmad
and one linear neurons.

Results: Table 2 shows thalv Net performances are much better thaiDV I, both for L AT and Py.
RMSE is divided by 4 forP, and by 2 forLAI. The scattering around the (1:1) line is higher fod
than for Py since there is a saturation of the reflectance for Highis. This feature is increased when
consideringV DV I estimates.

4 Validation of N Nets and N DV I techniques on the Alpilles’ReSeDA data set

The experimental site is an agricultural area (5kmx5km) located in the south of France4N43445).
Measurements were performed from October 96 to November 97, on various crepst (€ral., 1998).
Airborne reflectance measurements were achieved monthly using@ieD E' R instrument. Five flight
lines allowed theB RD F" acquisition. Spatial resolution was 20m. Images were corrected from instrumen-
tal, geometrical and atmospheric effects. Ground measuremehttiofvere performed using a planimeter.

To derive the nadir gap fraction fromAI data, we used relationships existing in the literature (Tab. 3).

4.1 Nadir gap fraction and leaf area index estimation

N Nets and N DV I methods are applied for bofhAT and P, estimation (Fig. 3, Tab. 4). We retrieve the
results obtained on the synthetic data set with high&fS E values due to the residual noise observed on
reflectance data. Performances are bettePfpthan for LAI. N Nets perform better thatv DV I. The
difference between the two methods for the estimation is however less important than for the synthetic data
set: RM SE divided by 1.6 forP, and by 1.1 forLAI. This is mainly due to the fact that there is only

12% of the measurements that corresponds4ds higher than 2.5, for which the saturation effect is much
higher withNDV I.



4.2 Impact of the spatial resolution fé, and L AT estimation.

As we consider data provided by large swath satellite sensors, we have to study the impact of the spatial
resolution on the retrieval of nadir gap fraction and leaf area index. A 1km by 1km square is thus extracted
from the center of thdteSeD A site. For this area, we compared the estimates, using two methods for the
16 flight dates:

1. The N Net input variables are averaged over BOLDER sub-pixels of the 1kr area. Corre-
spondingL AT and P, values are computed;

2. We runN Nets to getLAI and P, for eachPOLD E R sub-pixels, and average those values on the
whole 1kn? area.

As there is an important part of bare soils, we observe onlylloW values (fig. 4). Results show that
the nadir gap fraction estimation is not sensitive to the spatial resolution, since it is quite linearly related to
the reflectance. Conversely, thel is much more sensitive to the spatial resolution and is underestimated
with (1) as compared to (2). This leads to the conclusion that leaf area index is underestimated when using

large swath sensors.

5 Conclusions

This study is dedicated to the estimation of canopy biophysical variables from bidirectional reflectance
derived from large swath satellite data. This algorithm, based on neural networks, is built on a data set
generated with radiative transfer models. As compared ta\Whs/ I, it presents good performances of
estimation on synthetic as well as on experimental data. Results show that nadir gap fraction is more
accurately estimated thahAl due to the saturation of the signal for dense canopies. The estimation of
LAT is also sensitive to the spatial resolution. The algorithm we developed can be extended for any large
swath sensors. It also includes a way to normalize reflectance data. This study requires further validation
on actual data, corresponding to a wide range of canopies, especially forest and sparse vegetation.
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Tables

Table 1. Range of radiative transfer model inputs. For Gaussian (@w: ando stand for the average and standard

deviation valuesU stands for uniform distribution law.

Model Inputs

Distribution Laws

Structure variables
Leaf Area IndexL AT
Average Leaf Angle

Hot Spot parameter

U, min=0, maxr=6
U, min=15, maz=7%"

U, min=0.01,max=1

Leaf Optical Properties
Chlorophyll (xg.cm™2)
Water ¢m™")

Dry Matter (g.cm™?)

Mesophyll parameter

G, m=50,0 =16

G, m=0.010 =0.0024
G, m=50,0 = 0.0024
G,m=1.63,0 =0.26

Soil Optical Properties
Roughness

Phase Function

Phase Function

Single Scattering Albedd

U, min=0, maz=0.03
U, min=-1.8, mazr=1.8

U, min=0.05,maz=1

Jacquemoud et al. (1997

Viewing Conditions
Day of the year
Latitude

U, min=1, mar=365

U, min=0, maz=67

Table2. NDV I andN Net performances on the synthetic test data set.

NDVI NNet
RMSE | T RMSE T
Py 0.16 0.76 0.04 0.98
LAI 1.10 0.69 0.53 0.92

Table 3. Relationships used to derive nadir gap fraction frbmI planimeter measurements. For Alfalfa, no value

was found in the literature.

Crop Authors

Wheat exp(—0.34LAI) | Baretetal. (1993)
Maize exp(—0.34LAI) | Espaia (1997)
Sunflower | exp(—0.6LAI) Shell et al. (1974)
Alfalfa exp(—0.5LAI)
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Table4. NDV I andN Net performances on the Alpilles/ReSeDA data set.

NDVI NNets
RMSE | T RMSE T
Py 0.13 0.75 0.08 0.9
LAI 0.49 0.79 0.44 0.82
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Figure Captions

Fig. 1. Extrapolation capacities of th&/ R PV model. The model inversion is first performed on a restricted amount
of data. Bidirectional reflectance is then estimated in all directions of observation.

Fig. 2. Stability of M RPV parametersd;), nadir reflectancep) and hemispherical reflectanga, §.

Fig. 3. Nadir gap fraction and leaf area index estimation usM@ets on the Alpilles/ ReSeDA data. e{maize,

B:wheat,A: sunflower,¢:alfalfa)

Fig. 4. Testing the impact of spatial resolution biA and P, estimation for the 1@ OLDE R acquisition dates. (1)
Using the averaged reflectance over the 1kimel as input taV Nets. (2) Using the averagel¥ Net output.
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Fig. 4. Testing the impact of spatial res-
olution of LATI and P, estimation for
the 16 POLDER acquisition dates.
(1) Using the averaged reflectance over
the 1kn? pixel as input toN Nets. (2)
Using the averaged’ Net output.



